International Journal of Molecular Sciences最新文献

筛选
英文 中文
Transcriptomic–Proteomic Analysis Revealed the Regulatory Mechanism of Peanut in Response to Fusarium oxysporum 转录组-蛋白组分析揭示了花生应对镰刀菌的调控机制
International Journal of Molecular Sciences Pub Date : 2024-01-03 DOI: 10.3390/ijms25010619
Mian Wang, Lifei Zhu, Chushu Zhang, Haixiang Zhou, Yueyi Tang, Shining Cao, Jing Chen, Jiancheng Zhang
{"title":"Transcriptomic–Proteomic Analysis Revealed the Regulatory Mechanism of Peanut in Response to Fusarium oxysporum","authors":"Mian Wang, Lifei Zhu, Chushu Zhang, Haixiang Zhou, Yueyi Tang, Shining Cao, Jing Chen, Jiancheng Zhang","doi":"10.3390/ijms25010619","DOIUrl":"https://doi.org/10.3390/ijms25010619","url":null,"abstract":"Peanut Fusarium rot, which is widely observed in the main peanut-producing areas in China, has become a significant factor that has limited the yield and quality in recent years. It is highly urgent and significant to clarify the regulatory mechanism of peanuts in response to Fusarium oxysporum. In this study, transcriptome and proteome profiling were combined to provide new insights into the molecular mechanisms of peanut stems after F. oxysporums infection. A total of 3746 differentially expressed genes (DEGs) and 305 differentially expressed proteins (DEPs) were screened. The upregulated DEGs and DEPs were primarily enriched in flavonoid biosynthesis, circadian rhythm-plant, and plant–pathogen interaction pathways. Then, qRT-PCR analysis revealed that the expression levels of phenylalanine ammonia-lyase (PAL), chalcone isomerase (CHI), and cinnamic acid-4-hydroxylase (C4H) genes increased after F. oxysporums infection. Moreover, the expressions of these genes varied in different peanut tissues. All the results revealed that many metabolic pathways in peanut were activated by improving key gene expressions and the contents of key enzymes, which play critical roles in preventing fungi infection. Importantly, this research provides the foundation of biological and chemical analysis for peanut disease resistance mechanisms.","PeriodicalId":509625,"journal":{"name":"International Journal of Molecular Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139388527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endogenous Signaling Molecule Activating (ESMA) CARs: A Novel CAR Design Showing a Favorable Risk to Potency Ratio for the Treatment of Triple Negative Breast Cancer 内源性信号分子激活 (ESMA) CARs:治疗三阴性乳腺癌的新型 CAR 设计显示出良好的风险与效力比
International Journal of Molecular Sciences Pub Date : 2024-01-03 DOI: 10.3390/ijms25010615
Mira Ebbinghaus, Katharina Wittich, Benjamin Bancher, Valeriia Lebedeva, Anijutta Appelshoffer, Julia Femel, Martin S. Helm, J. Kollet, Olaf Hardt, Rita Pfeifer
{"title":"Endogenous Signaling Molecule Activating (ESMA) CARs: A Novel CAR Design Showing a Favorable Risk to Potency Ratio for the Treatment of Triple Negative Breast Cancer","authors":"Mira Ebbinghaus, Katharina Wittich, Benjamin Bancher, Valeriia Lebedeva, Anijutta Appelshoffer, Julia Femel, Martin S. Helm, J. Kollet, Olaf Hardt, Rita Pfeifer","doi":"10.3390/ijms25010615","DOIUrl":"https://doi.org/10.3390/ijms25010615","url":null,"abstract":"As chimeric antigen receptor (CAR) T cell therapy continues to gain attention as a valuable treatment option against different cancers, strategies to improve its potency and decrease the side effects associated with this therapy have become increasingly relevant. Herein, we report an alternative CAR design that incorporates transmembrane domains with the ability to recruit endogenous signaling molecules, eliminating the need for stimulatory signals within the CAR structure. These endogenous signaling molecule activating (ESMA) CARs triggered robust cytotoxic activity and proliferation of the T cells when directed against the triple-negative breast cancer (TNBC) cell line MDA-MB-231 while exhibiting reduced cytokine secretion and exhaustion marker expression compared to their cognate standard second generation CARs. In a NOD SCID Gamma (NSG) MDA-MB-231 xenograft mouse model, the lead candidate maintained longitudinal therapeutic efficacy and an enhanced T cell memory phenotype. Profound tumor infiltration by activated T cells repressed tumor growth, further manifesting the proliferative capacity of the ESMA CAR T cell therapy. Consequently, ESMA CAR T cells entail promising features for improved clinical outcome as a solid tumor treatment option.","PeriodicalId":509625,"journal":{"name":"International Journal of Molecular Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139388515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Attenuation of PI3K-Akt-mTOR Pathway to Reduce Cancer Stemness on Chemoresistant Lung Cancer Cells by Shikonin and Synergy with BEZ235 Inhibitor 志贺宁与 BEZ235 抑制剂协同作用,抑制 PI3K-Akt-mTOR 通路以降低化疗耐药肺癌细胞的癌干性
International Journal of Molecular Sciences Pub Date : 2024-01-03 DOI: 10.3390/ijms25010616
Yen-Hsiang Huang, Ling-Yen Chiu, Jeng-Sen Tseng, Kuo-Hsuan Hsu, Chang-Han Chen, G. Sheu, Tsung-Ying Yang
{"title":"Attenuation of PI3K-Akt-mTOR Pathway to Reduce Cancer Stemness on Chemoresistant Lung Cancer Cells by Shikonin and Synergy with BEZ235 Inhibitor","authors":"Yen-Hsiang Huang, Ling-Yen Chiu, Jeng-Sen Tseng, Kuo-Hsuan Hsu, Chang-Han Chen, G. Sheu, Tsung-Ying Yang","doi":"10.3390/ijms25010616","DOIUrl":"https://doi.org/10.3390/ijms25010616","url":null,"abstract":"Lung cancer is considered the number one cause of cancer-related deaths worldwide. Although current treatments initially reduce the lung cancer burden, relapse occurs in most cases; the major causes of mortality are drug resistance and cancer stemness. Recent investigations have provided evidence that shikonin generates various bioactivities related to the treatment of cancer. We used shikonin to treat multi-resistant non-small lung cancer cells (DOC-resistant A549/D16, VCR-resistant A549/V16 cells) and defined the anti-cancer efficacy of shikonin. Our results showed shikonin induces apoptosis in these ABCB1-dependent and independent chemoresistance cancer sublines. Furthermore, we found that low doses of shikonin inhibit the proliferation of lung cancer stem-like cells by inhibiting spheroid formation. Concomitantly, the mRNA level and protein of stemness genes (Nanog and Oct4) were repressed significantly on both sublines. Shikonin reduces the phosphorylated Akt and p70s6k levels, indicating that the PI3K/Akt/mTOR signaling pathway is downregulated by shikonin. We further applied several signaling pathway inhibitors that have been used in anti-cancer clinical trials to test whether shikonin is suitable as a sensitizer for various signaling pathway inhibitors. In these experiments, we found that low doses shikonin and dual PI3K-mTOR inhibitor (BEZ235) have a synergistic effect that inhibits the spheroid formation from chemoresistant lung cancer sublines. Inhibiting the proliferation of lung cancer stem cells is believed to reduce the recurrence of lung cancer; therefore, shikonin’s anti-drug resistance and anti-cancer stem cell activities make it a highly interesting molecule for future combined lung cancer therapy.","PeriodicalId":509625,"journal":{"name":"International Journal of Molecular Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139388429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biodegradation of Typical Plastics: From Microbial Diversity to Metabolic Mechanisms 典型塑料的生物降解:从微生物多样性到代谢机制
International Journal of Molecular Sciences Pub Date : 2024-01-02 DOI: 10.3390/ijms25010593
Shiwei Lv, Yufei Li, Sufang Zhao, Zongze Shao
{"title":"Biodegradation of Typical Plastics: From Microbial Diversity to Metabolic Mechanisms","authors":"Shiwei Lv, Yufei Li, Sufang Zhao, Zongze Shao","doi":"10.3390/ijms25010593","DOIUrl":"https://doi.org/10.3390/ijms25010593","url":null,"abstract":"Plastic production has increased dramatically, leading to accumulated plastic waste in the ocean. Marine plastics can be broken down into microplastics (<5 mm) by sunlight, machinery, and pressure. The accumulation of microplastics in organisms and the release of plastic additives can adversely affect the health of marine organisms. Biodegradation is one way to address plastic pollution in an environmentally friendly manner. Marine microorganisms can be more adapted to fluctuating environmental conditions such as salinity, temperature, pH, and pressure compared with terrestrial microorganisms, providing new opportunities to address plastic pollution. Pseudomonadota (Proteobacteria), Bacteroidota (Bacteroidetes), Bacillota (Firmicutes), and Cyanobacteria were frequently found on plastic biofilms and may degrade plastics. Currently, diverse plastic-degrading bacteria are being isolated from marine environments such as offshore and deep oceanic waters, especially Pseudomonas spp. Bacillus spp. Alcanivoras spp. and Actinomycetes. Some marine fungi and algae have also been revealed as plastic degraders. In this review, we focused on the advances in plastic biodegradation by marine microorganisms and their enzymes (esterase, cutinase, laccase, etc.) involved in the process of biodegradation of polyethylene terephthalate (PET), polystyrene (PS), polyethylene (PE), polyvinyl chloride (PVC), and polypropylene (PP) and highlighted the need to study plastic biodegradation in the deep sea.","PeriodicalId":509625,"journal":{"name":"International Journal of Molecular Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139390671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
QTL Detection and Candidate Gene Identification for Eating and Cooking Quality Traits in Rice (Oryza sativa L.) via a Genome-Wide Association Study 通过全基因组关联研究检测水稻(Oryza sativa L.)食用和烹饪品质性状的 QTL 并确定候选基因
International Journal of Molecular Sciences Pub Date : 2024-01-01 DOI: 10.3390/ijms25010630
Jian-hua Jiang, Shaojie Song, Changmin Hu, Chunyu Jing, Qing Xu, Xinru Li, Mengyuan Zhang, Mei Hai, Jiaming Shen, Ying Zhang, Dezheng Wang, X. Dang
{"title":"QTL Detection and Candidate Gene Identification for Eating and Cooking Quality Traits in Rice (Oryza sativa L.) via a Genome-Wide Association Study","authors":"Jian-hua Jiang, Shaojie Song, Changmin Hu, Chunyu Jing, Qing Xu, Xinru Li, Mengyuan Zhang, Mei Hai, Jiaming Shen, Ying Zhang, Dezheng Wang, X. Dang","doi":"10.3390/ijms25010630","DOIUrl":"https://doi.org/10.3390/ijms25010630","url":null,"abstract":"The eating and cooking quality (ECQ) directly affects the taste of rice, being closely related to factors such as gelatinization temperature (GT), gel consistency (GC) and amylose content (AC). Mining the quantitative trait loci (QTLs), and gene loci controlling ECQ-related traits is vital. A genome-wide association study on ECQ-related traits was conducted, combining 1.2 million single nucleotide polymorphisms (SNPs) with the phenotypic data of 173 rice accessions. Two QTLs for GT, one for GC and five for AC were identified, of which two were found in previously reported genes, and six were newly found. There were 28 positional candidate genes in the region of qAC11. Based on a linkage disequilibrium (LD) analysis, three candidate genes were screened within the LD region associated with AC. There were significant differences between the haplotypes of LOC_Os11g10170, but no significant differences were found for the other two genes. The qRT-PCR results showed that the gene expression levels in the accessions with high ACs were significantly larger than those in the accessions with low ACs at 35d and 42d after flowering. Hap 2 and Hap 3 of LOC_Os11g10170 reduced the AC by 13.09% and 10.77%, respectively. These results provide a theoretical and material basis for improving the ECQ of rice.","PeriodicalId":509625,"journal":{"name":"International Journal of Molecular Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139388700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信