GEOPHYSICS最新文献

筛选
英文 中文
Recovering 3D Salt Dome by Gravity Data Inversion Using ResU-Net++ 利用 ResU-Net++ 通过重力数据反演恢复三维盐丘
GEOPHYSICS Pub Date : 2024-05-23 DOI: 10.1190/geo2023-0551.1
Minghao Xian, Zhengwei Xu, Michael S. Zhdanov, Yaming Ding, Rui Wang, Xuben Wang, Jun Li, Guangdong Zhao
{"title":"Recovering 3D Salt Dome by Gravity Data Inversion Using ResU-Net++","authors":"Minghao Xian, Zhengwei Xu, Michael S. Zhdanov, Yaming Ding, Rui Wang, Xuben Wang, Jun Li, Guangdong Zhao","doi":"10.1190/geo2023-0551.1","DOIUrl":"https://doi.org/10.1190/geo2023-0551.1","url":null,"abstract":"In geophysical research, gravity-based inversion is essential for identifying geological anomalies, mapping rock structures, and extracting resources such as oil and minerals. Traditional gravity inversion methods, however, face challenges such as the volumetric effects of gravity fields and the management of large, complex matrices. Unsupervised learning techniques often struggle with overfitting and interpreting gravity data. This study explores the application of various U-Net-based network architectures in gravity inversion, each offering distinct challenges and advantages. Nested U-Net, although effective, requires a high parameter count, leading to extended training periods. Recurrent Residual U-Net's implicit attention mechanism restricts its dynamic adaptability, while Attention U-Net's lack of residual connections raises concerns about gradient issues. This research comprehensively analyzes the training processes, core functionalities, and module distribution of these networks, including Residual U-Net++. Our synthetic studies compare these networks with traditional focused regularized gravity inversion for reconstructing density anomalies. The results demonstrate that Nested U-Net closely approximates the actual model, despite some redundancy. Recurrent Residual U-Net shows improved alignment with minimal redundancies, and Attention U-Net is effective in density prediction but encounters difficulties in areas of low density. Notably, Residual U-Net++ excels in inversion modeling, achieving the lowest misfit percentage and accurately replicating density values. In practical applications, Residual U-Net++ impressively reconstructed the F2 salt diapir in the Nordkapp Basin with well-defined boundaries that closely match seismic data interpretations. These results underscore the capabilities of Residual U-Net++ in geophysical data analysis, structural reconstruction, and inversion, demonstrating its effectiveness in both simulated settings and real-world scenarios.","PeriodicalId":509604,"journal":{"name":"GEOPHYSICS","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141104478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust Seismic data denoising via self-supervised deep learning 通过自监督深度学习实现鲁棒性地震数据去噪
GEOPHYSICS Pub Date : 2024-05-23 DOI: 10.1190/geo2023-0762.1
Ji Li, Daniel Trad, Dawei Liu
{"title":"Robust Seismic data denoising via self-supervised deep learning","authors":"Ji Li, Daniel Trad, Dawei Liu","doi":"10.1190/geo2023-0762.1","DOIUrl":"https://doi.org/10.1190/geo2023-0762.1","url":null,"abstract":"Seismic data denoising is a critical component of seismic data processing, yet effectively removing erratic noise, characterized by its non-Gaussian distribution and high amplitude, remains a substantial challenge for conventional methods and deep learning (DL) algorithms. Supervised learning frameworks typically outperform others, but they require pairs of noisy datasets alongside corresponding clean ground truth, which is impractical for real-world seismic datasets. On the other hand, unsupervised learning methods, which do not rely on ground truth during training, often fall short in performance when compared to their supervised or traditional denoising counterparts. Moreover, current unsupervised deep learning methods fail to address the specific challenges posed by erratic seismic noise adequately. This paper introduces a novel zero-shot unsupervised DL framework designed specifically to mitigate random and erratic noise, with a particular emphasis on blending noise. Drawing inspiration from Noise2Noise and data augmentation principles, we present a robust self-supervised denoising network named ““Robust Noiser2Noiser.”.” Our approach eliminates the need for paired noisy and clean datasets as required by supervised methods or paired noisy datasets as in Noise2Noise (N2N). Instead, our framework relies solely on the original noisy seismic dataset. Our methodology generates two independent re-corrupted datasets from the original noisy dataset, using one as the input and the other as the training target. Subsequently, we employ a deep-learning-based denoiser, DnCNN, for training purposes. To address various types of random and erratic noise, the original noisy dataset is re-corrupted with the same noise type. Detailed explanations for generating training input and target data for blended data are provided in the paper. We apply our proposed network to both synthetic and real marine data examples, demonstrating significantly improved noise attenuation performance compared to traditional denoising methods and state-of-the-art unsupervised learning methods.","PeriodicalId":509604,"journal":{"name":"GEOPHYSICS","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141105822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D airborne electromagnetic data inversion basing on the block coordinate descent method 基于块坐标下降法的三维机载电磁数据反演
GEOPHYSICS Pub Date : 2024-05-22 DOI: 10.1190/geo2023-0673.1
Zhang Bo, Kelin Qu, C. Yin, Yunhe Liu, X. Ren, Yang Su, V. Baranwal
{"title":"3D airborne electromagnetic data inversion basing on the block coordinate descent method","authors":"Zhang Bo, Kelin Qu, C. Yin, Yunhe Liu, X. Ren, Yang Su, V. Baranwal","doi":"10.1190/geo2023-0673.1","DOIUrl":"https://doi.org/10.1190/geo2023-0673.1","url":null,"abstract":"Airborne electromagnetic (AEM) surveys usually covers a large area and create a large amount of data. This has limited the application of three-dimensional (3D) AEM inversions. To make 3D AEM data inversion at a large scale possible, the local mesh method has been proposed to avoid solving large matrix equations in 3D AEM modeling. However, the local mesh only saves the computational cost and memory during forward modeling and Jacobian calculations. When the survey area is very large, the cost for storing and solving the inversion equations can be very high. This brings big challenges to practical 3D AEM inversions. To solve this problem, we develop a 3D scheme based on the block coordinate descent (BCD) method for inversions of large-scale AEM data. The BCD method divides the inversion for large models into series of small-local inversions, so that we can avoid solving the large matrix equations. Numerical experiments demonstrate that the BCD method can get very similar results to those from the existing inversion methods but saves huge amounts of memory.","PeriodicalId":509604,"journal":{"name":"GEOPHYSICS","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141109906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectral Induced Polarization Tomography Inversion: Hybridizing Homotopic Continuation with Bayesian Inversion 光谱诱导极化断层扫描反演:混合同位连续与贝叶斯反演
GEOPHYSICS Pub Date : 2024-05-22 DOI: 10.1190/geo2023-0644.1
Mohamad Sadegh Roudsari, R. Ghanati, Charles L. Bérubé
{"title":"Spectral Induced Polarization Tomography Inversion: Hybridizing Homotopic Continuation with Bayesian Inversion","authors":"Mohamad Sadegh Roudsari, R. Ghanati, Charles L. Bérubé","doi":"10.1190/geo2023-0644.1","DOIUrl":"https://doi.org/10.1190/geo2023-0644.1","url":null,"abstract":"Induced polarization tomography offers the potential to better characterize the subsurface structures by considering spectral content from the data acquisition over a broad frequency range. Spectral induced polarization tomography is generally defined as a non-linear inverse problem commonly solved through deterministic gradient-based methods. To this end, the spectral parameters, i.e., DC resistivity, chargeability, relaxation time, and frequency exponent, are resolved by individually or simultaneously inverting all frequency data followed by fitting a generalized Cole-Cole model to the inverted complex resistivities. Due to the high correlation between Cole-Cole model parameters and a lack of knowledge about the initial approximation of the spectral parameters, using the classical least-square methods may lead to inaccurate solutions and impede reliable uncertainty analysis. To cope with these limitations, we introduce a new approach based on a hybrid application of a globally convergent homotopic continuation method and Bayesian inference to reconstruct the distribution of the subsurface spectral parameters. The homotopic optimization, owing to its fast and global convergence, is first implemented to invert multi-frequency spectral induced polarization datasets aimed at retrieving the complex-valued resistivity. Then, Bayesian inversion based on a Markov-chain Monte Carlo (McMC) sampling method along with a priori information including lower and upper bounds of the prior distributions is utilized to invert the complex resistivity for Cole-Cole model parameters. By applying the McMC inversion algorithm a full nonlinear uncertainty appraisal can be provided. We numerically evaluate the performance of the proposed method using synthetic and real data examples in the presence of topographical effects. Numerical results prove that the homotopic continuation method outperforms the classic smooth inversion algorithm in the sense of approximation accuracy and computational efficiency. we demonstrate that the proposed hybrid inversion strategy provides reliable representations of the main features and structure of the Earth’s subsurface in terms of the spectral parameters.","PeriodicalId":509604,"journal":{"name":"GEOPHYSICS","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141109236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
COMPUTER-ASSISTED REGIONAL-RESIDUAL GRAVITY ANOMALY SEPARATION WITH REGULARIZED FIRST AND SECOND-ORDER DERIVATIVES 利用正则化一阶和二阶导数的计算机辅助区域-残差重力异常分离技术
GEOPHYSICS Pub Date : 2024-05-21 DOI: 10.1190/geo2023-0546.1
Carlos Alberto Mendonça
{"title":"COMPUTER-ASSISTED REGIONAL-RESIDUAL GRAVITY ANOMALY SEPARATION WITH REGULARIZED FIRST AND SECOND-ORDER DERIVATIVES","authors":"Carlos Alberto Mendonça","doi":"10.1190/geo2023-0546.1","DOIUrl":"https://doi.org/10.1190/geo2023-0546.1","url":null,"abstract":"The regional-residual separation of gravity anomalies in crustal and mineral exploration was a graphical-based procedure before the advent of fast digital computers and the need for more efficient algorithms to process large data sets. However, since requiring the supervision of an experienced interpreter, the results once obtained with graphical procedures are often accepted as second to none in producing anomalies with geological significance. Numerical methods based on spectral filtering and robust polynomial fitting have worked in many scenarios but seem not fully effective in replicating in algorithms the kind of results once obtained with interpreter-assisted graphical methods. We develop a procedure (CARRS- Computed Assisted Regional Residual Separation) implemented by a set of short MATLAB scripts which in many aspects simulates the operations of former graphical methods but requires few decisions and minor hand-work from the interpreter. CARRS applies robust polynomial fitting to points with low horizontal gradient and vertical second-order derivative, thus selecting fitting points as a real interpreter would do with graphical approaches in outlining the regional field. A regularized procedure is used to calculate stable first and second-order derivatives. MATLAB codes in companion allow results replication and further exploration with different threshold levels to identify flat domain regions. CARRS is illustrated with airborne gravity data CPRM-1123 freely available to download. A data window of the residual field is used to analyze the distribution of cassiterite deposits in greisen zones of the Paleoproterozoic Velho Guilherme granites in the Amazon Craton, as their distribution appears in the observed gravity anomaly and its corresponding residual field.","PeriodicalId":509604,"journal":{"name":"GEOPHYSICS","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141116624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dealiased seismic data interpolation by dynamic matching 通过动态匹配进行分层地震数据插值
GEOPHYSICS Pub Date : 2024-05-21 DOI: 10.1190/geo2023-0249.1
Yingjie Xu, Siwei Yu, Lieqian Dong, Jianwei Ma
{"title":"Dealiased seismic data interpolation by dynamic matching","authors":"Yingjie Xu, Siwei Yu, Lieqian Dong, Jianwei Ma","doi":"10.1190/geo2023-0249.1","DOIUrl":"https://doi.org/10.1190/geo2023-0249.1","url":null,"abstract":"Interpolation is a critical step in seismic data processing. Gaps in seismic traces can lead to severe spatial aliasing phenomena in the corresponding F-K spectra. The aliasing caused by regularly spaced gaps has similar F-K spectra as those of the actual data. Existing dealiasing interpolation algorithms generally assume that seismic events are linear, and cannot handle non-stationary events. To address this shortcoming, we proposed a novel dealiased seismic data interpolation approach using dynamic matching. First, we matched two adjacent seismic traces using the local affine regional dynamic time-warping algorithm. Subsequently, we calculated the local slope between two seismic traces. Finally, we performed linear interpolation on the regularly missing seismic data using local slope information. The proposed approach was tested on both synthetic and field seismic datasets. The interpolation results showed that the proposed approach has a better anti-aliasing ability and computational efficiency than the traditional Spitz and seislet-based approaches. Additionally, this method can also be applied to interpolate irregularly sampled seismic data and for simultaneous seismic data interpolation and denoising.","PeriodicalId":509604,"journal":{"name":"GEOPHYSICS","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141117114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analyzing the seismic response characteristics of P-, SV-, and SH- waves to reservoir parameters using physical modeling 利用物理建模分析 P 波、SV 波和 SH 波对储层参数的地震响应特性
GEOPHYSICS Pub Date : 2024-05-21 DOI: 10.1190/geo2023-0454.1
Pinbo Ding, Feng Zhang, Xiangyang Li, Y. Chai
{"title":"Analyzing the seismic response characteristics of P-, SV-, and SH- waves to reservoir parameters using physical modeling","authors":"Pinbo Ding, Feng Zhang, Xiangyang Li, Y. Chai","doi":"10.1190/geo2023-0454.1","DOIUrl":"https://doi.org/10.1190/geo2023-0454.1","url":null,"abstract":"Changes in reservoir parameters cause differences in seismic response characteristics, which can reflect changes in the formation lithology and fluids. Herein, seismic physical modeling and seismic response characteristic analysis of P-, SV-, and SH- wave fields were conducted. A seismic physical model was developed in the laboratory, which included several groups of sandstone blocks for simulating reservoir parameters, such as different fluid and clay contents. Two-dimensional wave field data of P-P, SV-SV, and SH-SH waves were acquired and processed in the laboratory. Compared with P- waves, SV- and SH- waves were insensitive to oil and air mediums and were almost unaffected by pore fluids, and the SH- stack profile was superior to the SV- stack profile. Compared with P- waves, shear waves are insensitive to fluids and are less affected by fluid saturation. The reflection events at the interface were slightly better for the SH- wave section than for the SV- wave section. The reflection coefficient of P- waves varied greatly on AVA gathers and was significantly influenced by factors, such as fluids. The variation in the SV- wave reflection coefficient on AVA gathers was not as significant as that of P- waves, and SV- and SH- wave were more conducive to identifying whether the block contained clay. The SH- wave was more reliable for seismic imaging. Overall, this study can assist in combining different seismic wave data for better hydrocarbon identification and reservoir description.","PeriodicalId":509604,"journal":{"name":"GEOPHYSICS","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141118102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing attenuation estimation through integration of the Hessian in multiparameter viscoacoustic full-Waveform inversion 通过整合多参数粘声全波形反演中的赫塞斯,推进衰减估算工作
GEOPHYSICS Pub Date : 2024-05-21 DOI: 10.1190/geo2023-0634.1
G. Xing, Tieyuan Zhu
{"title":"Advancing attenuation estimation through integration of the Hessian in multiparameter viscoacoustic full-Waveform inversion","authors":"G. Xing, Tieyuan Zhu","doi":"10.1190/geo2023-0634.1","DOIUrl":"https://doi.org/10.1190/geo2023-0634.1","url":null,"abstract":"Accurate seismic attenuation models of subsurface structures not only enhance subsequent migration processes by improving fidelity, resolution, and facilitating amplitude-compliant angle gather generation, but also provide valuable constraints on subsurface physical properties. Leveraging full wavefield information, multiparameter viscoacoustic full-waveform inversion ( Q-FWI) simultaneously estimates seismic velocity and attenuation ( Q) models. However, a major challenge in Q-FWI is the contamination of crosstalk artifacts, where inaccuracies in the velocity model get mistakenly mapped to the inverted attenuation model. While incorporating the Hessian is expected to mitigate these artifacts, the explicit implementation is prohibitively expensive due to its formidable computational cost. In this study, we formulate and develop a Q-FWI algorithm via the Newton-CG framework, where the search direction at each iteration is determined through an internal conjugate gradient (CG) loop. In particular, the Hessian is integrated into each CG step in a matrix-free fashion using the second-order adjoint-state method. We find through synthetic experiments that the proposed Newton-CG Q-FWI significantly mitigates crosstalk artifacts compared to the L-BFGS method and the conjugate gradient (CG) method, albeit with a notable computational cost. In the discussion of several key implementation details, we also demonstrate the significance of the approximate Gauss-Newton Hessian, the second-order adjoint-state method, and the two-stage inversion strategy.","PeriodicalId":509604,"journal":{"name":"GEOPHYSICS","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141114227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acoustic wave simulation in strongly heterogeneous models using a discontinuous Galerkin method 使用非连续伽勒金方法模拟强异质模型中的声波
GEOPHYSICS Pub Date : 2024-05-20 DOI: 10.1190/geo2023-0525.1
Wenzhong Cao, Wei Zhang, Weitao Wang
{"title":"Acoustic wave simulation in strongly heterogeneous models using a discontinuous Galerkin method","authors":"Wenzhong Cao, Wei Zhang, Weitao Wang","doi":"10.1190/geo2023-0525.1","DOIUrl":"https://doi.org/10.1190/geo2023-0525.1","url":null,"abstract":"In recent years, the discontinuous Galerkin method (DGM) has been rapidly developed for the numerical simulation of seismic waves. For wavefield propagation between two adjacent elements, it is common practice to apply a numerical flux to the boundary of each element to propagate waves between adjacent elements. Several fluxes, including the center, penalty, Local Lax–Friedrich (LLF), upwind, and Rankine–Hugoniot jump condition-based (RH-condition) fluxes are widely used in numerical seismic wave simulation. However, some fluxes do not account for media differences between adjacent elements. Although different fluxes have been successfully used in DGM for many velocity models, it is unclear whether they can produce sufficiently accurate or stable results for strongly heterogeneous models, such as checkerboard models commonly used in tomographic studies. We test different fluxes using the acoustic wave equation. We analyzed the accuracy of the penalty, LLF, upwind, and RH-condition fluxes based on the results of the numerical simulations of the homogeneous and two-layer models. We conducted simulations using checkerboard models, and the results indicated that the LLF, penalty, and upwind fluxes may have instability problems in heterogeneous models with long-time simulations. We observed instability issues in the LLF, penalty, and upwind fluxes when the wave-impedance contrast was high at the media interface. However, the results of RH-condition flux remained consistently stable. The series of numerical examples presented in this work provide insights into the characteristics and application of fluxes for seismic wave modeling.","PeriodicalId":509604,"journal":{"name":"GEOPHYSICS","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141119593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new multiscale imaging method for estimating the depth and structural index of magnetic source 估算磁源深度和结构指数的多尺度成像新方法
GEOPHYSICS Pub Date : 2024-05-15 DOI: 10.1190/geo2022-0674.1
Yanguo Wang, Ye Tian, Juzhi Deng
{"title":"A new multiscale imaging method for estimating the depth and structural index of magnetic source","authors":"Yanguo Wang, Ye Tian, Juzhi Deng","doi":"10.1190/geo2022-0674.1","DOIUrl":"https://doi.org/10.1190/geo2022-0674.1","url":null,"abstract":"The fast automatic technique for determining the source parameter is very commonly used to interpret magnetic data. A new method is proposed to estimate the magnetic source parameter based on the any order analytic signals of magnetic anomalies at different altitudes. The new method is based on the relationship between the location, depth and structural index of the source and the expressions of analytic signals, and employs the altitude z and a depth scaling factor β to establish a new multiscale imaging method called Variable Depth Mirror Imaging (VDMI), whose extreme points are related to the source parameters. Two equations are given to calculate the source depth and structural index on the basis of the vertical positions of the peaks of VDMI sections with two different β. Moreover, a series of solutions of source parameters will be obtained when a number of β are selected, which can make the results more reasonable. The method is stable and can be directly applied to noisy anomalies or high-order derivatives because it is based on magnetic anomalies of upward continuation. In addition, the method is flexible as we can select different β as desired. Moreover, the method can be applied to multisource cases, and can simultaneously estimate the depth and structural index for each source. The method was tested on noise-free and noise-corrupted synthetic magnetic anomalies. In all cases, the VDMI method effectively estimates the depths and structural indices of the sources. The VDMI method was also applied to real aeromagnetic data from the Hamrawien area, Egypt, and ground magnetic data over Neibei Farm of Heilongjiang Province, China.","PeriodicalId":509604,"journal":{"name":"GEOPHYSICS","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141128155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信