The Cryosphere最新文献

筛选
英文 中文
Meteoric water and glacial melt in the southeastern Amundsen Sea: a time series from 1994 to 2020 阿蒙森海东南部的流星水和冰川融化:1994 年至 2020 年的时间序列
The Cryosphere Pub Date : 2024-02-20 DOI: 10.5194/tc-18-791-2024
Andrew N. Hennig, D. Mucciarone, Stanley S. Jacobs, R. Mortlock, Robert B. Dunbar
{"title":"Meteoric water and glacial melt in the southeastern Amundsen Sea: a time series from 1994 to 2020","authors":"Andrew N. Hennig, D. Mucciarone, Stanley S. Jacobs, R. Mortlock, Robert B. Dunbar","doi":"10.5194/tc-18-791-2024","DOIUrl":"https://doi.org/10.5194/tc-18-791-2024","url":null,"abstract":"Abstract. Ice sheet mass loss from Antarctica is greatest in the Amundsen Sea sector, where “warm” modified Circumpolar Deep Water moves onto the continental shelf and melts and thins the bases of ice shelves hundreds of meters below the sea surface. We use nearly 1000 paired salinity and oxygen isotope analyses of seawater samples collected on seven expeditions from 1994 to 2020 to produce a time series of glacial meltwater inventory for the southeastern Amundsen Sea continental shelf. Deep water column salinity–δ18O relationships yield freshwater end-member δ18O values from -31.3±1.0‰ to -28.4±1.0‰, consistent with the isotopic composition of local glacial ice. We use a two-component meteoric water end-member approach that accounts for precipitation in the upper water column, and a pure glacial meteoric water end-member is employed for the deep water column. Meteoric water inventories are comprised of nearly pure glacial meltwater in deep shelf waters and of >74 % glacial meltwater in the upper water column. Total meteoric water inventories range from 8.1±0.7 to 9.6±0.8 m and exhibit greater interannual variability than trend over the study period, based on the available data. The relatively long residence time in the southeastern Amundsen Sea allows changes in mean meteoric water inventories to diagnose large changes in local melt rates, and improved understanding of regional circulation could produce well-constrained glacial meltwater fluxes. The two-component meteoric end-member technique improves the accuracy of the sea ice melt and meteoric fractions estimated from seawater δ18O measurements throughout the entire water column and increases the utility for the broader application of these estimates.\u0000","PeriodicalId":509217,"journal":{"name":"The Cryosphere","volume":"208 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140447491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A low-cost and open-source approach for supraglacial debris thickness mapping using UAV-based infrared thermography 利用无人机红外热成像技术绘制超冰川碎屑厚度图的低成本开源方法
The Cryosphere Pub Date : 2024-02-19 DOI: 10.5194/tc-18-719-2024
J. Messmer, A. Groos
{"title":"A low-cost and open-source approach for supraglacial debris thickness mapping using UAV-based infrared thermography","authors":"J. Messmer, A. Groos","doi":"10.5194/tc-18-719-2024","DOIUrl":"https://doi.org/10.5194/tc-18-719-2024","url":null,"abstract":"Abstract. Debris-covered glaciers exist in many mountain ranges and play an important role in the regional water cycle. However, modelling the surface mass balance, runoff contribution and future evolution of debris-covered glaciers is fraught with uncertainty as accurate observations on small-scale variations in debris thickness and sub-debris ice melt rates are only available for a few locations worldwide. Here we describe a customised low-cost unoccupied aerial vehicle (UAV) for high-resolution thermal imaging of mountain glaciers and present a complete open-source pipeline that facilitates the generation of accurate surface temperature and debris thickness maps from radiometric images. First, a radiometric orthophoto is computed from individual radiometric UAV images using structure-from-motion and multi-view-stereo techniques. User-specific calibration and correction procedures can then be applied to the radiometric orthophoto to account for atmospheric and environmental influences that affect the radiometric measurement. The thermal orthophoto reveals distinct spatial variations in surface temperature across the surveyed debris-covered area. Finally, a high-resolution debris thickness map is derived from the corrected thermal orthophoto using an empirical or inverse surface energy balance model that relates surface temperature to debris thickness and is calibrated against in situ measurements. Our results from a small-scale experiment on the Kanderfirn (also known as Kander Neve) in the Swiss Alps show that the surface temperature and thickness of a relatively thin debris layer (ca. 0–15 cm) can be mapped with high accuracy using an empirical or physical model. On snow and ice surfaces, the mean deviation of the mapped surface temperature from the melting point (∼ 0 ∘C) was 0.6 ± 2.0 ∘C. The root-mean-square error of the modelled debris thickness was 1.3 cm. Through the detailed mapping, typical small-scale debris features and debris thickness patterns become visible, which are not spatially resolved by the thermal infrared sensors of current-generation satellites. The presented approach paves the way for comprehensive high-resolution supraglacial debris thickness mapping and opens up new opportunities for more accurate monitoring and modelling of debris-covered glaciers.\u0000","PeriodicalId":509217,"journal":{"name":"The Cryosphere","volume":"28 21","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140450429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaporative controls on Antarctic precipitation: an ECHAM6 model study using innovative water tracer diagnostics 南极降水的蒸发控制:利用创新水示踪诊断法进行的 ECHAM6 模型研究
The Cryosphere Pub Date : 2024-02-13 DOI: 10.5194/tc-18-683-2024
Qinggang Gao, L. Sime, Alison J. McLaren, T. Bracegirdle, Emilie Capron, Rachael H. Rhodes, H. Steen‐Larsen, Xiaoxu Shi, Martin Werner
{"title":"Evaporative controls on Antarctic precipitation: an ECHAM6 model study using innovative water tracer diagnostics","authors":"Qinggang Gao, L. Sime, Alison J. McLaren, T. Bracegirdle, Emilie Capron, Rachael H. Rhodes, H. Steen‐Larsen, Xiaoxu Shi, Martin Werner","doi":"10.5194/tc-18-683-2024","DOIUrl":"https://doi.org/10.5194/tc-18-683-2024","url":null,"abstract":"Abstract. Improving our understanding of the controls on Antarctic precipitation is critical for gaining insights into past and future polar and global environmental changes. Here we develop innovative water tracing diagnostics in the atmospheric general circulation model ECHAM6. These tracers provide new detailed information on moisture source locations and properties of Antarctic precipitation. In the preindustrial simulation, annual mean Antarctic precipitation originating from the open ocean has a source latitude range of 49–35∘ S, a source sea surface temperature range of 9.8–16.3 ∘C, a source 2 m relative humidity range of 75.6 %–83.3 %, and a source 10 m wind velocity (vel10) range of 10.1 to 11.3 m s−1. These results are consistent with estimates from existing literature. Central Antarctic precipitation is sourced from more equatorward (distant) sources via elevated transport pathways compared to coastal Antarctic precipitation. This has been attributed to a moist isentropic framework; i.e. poleward vapour transport tends to follow constant equivalent potential temperature. However, we find notable deviations from this tendency especially in the lower troposphere, likely due to radiative cooling. Heavy precipitation is sourced by longer-range moisture transport: it comes from 2.9∘ (300 km, averaged over Antarctica) more equatorward (distant) sources compared to the rest of precipitation. Precipitation during negative phases of the Southern Annular Mode (SAM) also comes from more equatorward moisture sources (by 2.4∘, averaged over Antarctica) compared to precipitation during positive SAM phases, likely due to amplified planetary waves during negative SAM phases. Moreover, source vel10 of annual mean precipitation is on average 2.1 m s−1 higher than annual mean vel10 at moisture source locations from which the precipitation originates. This shows that the evaporation of moisture driving Antarctic precipitation occurs under windier conditions than average. We quantified this dynamic control of Southern Ocean surface wind on moisture availability for Antarctic precipitation. Overall, the innovative water tracing diagnostics enhance our understanding of the controlling factors of Antarctic precipitation.\u0000","PeriodicalId":509217,"journal":{"name":"The Cryosphere","volume":"97 15","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139781314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaporative controls on Antarctic precipitation: an ECHAM6 model study using innovative water tracer diagnostics 南极降水的蒸发控制:利用创新水示踪诊断法进行的 ECHAM6 模型研究
The Cryosphere Pub Date : 2024-02-13 DOI: 10.5194/tc-18-683-2024
Qinggang Gao, L. Sime, Alison J. McLaren, T. Bracegirdle, Emilie Capron, Rachael H. Rhodes, H. Steen‐Larsen, Xiaoxu Shi, Martin Werner
{"title":"Evaporative controls on Antarctic precipitation: an ECHAM6 model study using innovative water tracer diagnostics","authors":"Qinggang Gao, L. Sime, Alison J. McLaren, T. Bracegirdle, Emilie Capron, Rachael H. Rhodes, H. Steen‐Larsen, Xiaoxu Shi, Martin Werner","doi":"10.5194/tc-18-683-2024","DOIUrl":"https://doi.org/10.5194/tc-18-683-2024","url":null,"abstract":"Abstract. Improving our understanding of the controls on Antarctic precipitation is critical for gaining insights into past and future polar and global environmental changes. Here we develop innovative water tracing diagnostics in the atmospheric general circulation model ECHAM6. These tracers provide new detailed information on moisture source locations and properties of Antarctic precipitation. In the preindustrial simulation, annual mean Antarctic precipitation originating from the open ocean has a source latitude range of 49–35∘ S, a source sea surface temperature range of 9.8–16.3 ∘C, a source 2 m relative humidity range of 75.6 %–83.3 %, and a source 10 m wind velocity (vel10) range of 10.1 to 11.3 m s−1. These results are consistent with estimates from existing literature. Central Antarctic precipitation is sourced from more equatorward (distant) sources via elevated transport pathways compared to coastal Antarctic precipitation. This has been attributed to a moist isentropic framework; i.e. poleward vapour transport tends to follow constant equivalent potential temperature. However, we find notable deviations from this tendency especially in the lower troposphere, likely due to radiative cooling. Heavy precipitation is sourced by longer-range moisture transport: it comes from 2.9∘ (300 km, averaged over Antarctica) more equatorward (distant) sources compared to the rest of precipitation. Precipitation during negative phases of the Southern Annular Mode (SAM) also comes from more equatorward moisture sources (by 2.4∘, averaged over Antarctica) compared to precipitation during positive SAM phases, likely due to amplified planetary waves during negative SAM phases. Moreover, source vel10 of annual mean precipitation is on average 2.1 m s−1 higher than annual mean vel10 at moisture source locations from which the precipitation originates. This shows that the evaporation of moisture driving Antarctic precipitation occurs under windier conditions than average. We quantified this dynamic control of Southern Ocean surface wind on moisture availability for Antarctic precipitation. Overall, the innovative water tracing diagnostics enhance our understanding of the controlling factors of Antarctic precipitation.\u0000","PeriodicalId":509217,"journal":{"name":"The Cryosphere","volume":"27 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139841101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Snow water equivalent retrieval over Idaho – Part 2: Using L-band UAVSAR repeat-pass interferometry 爱达荷州上空的雪水当量检索 - 第二部分:使用 L 波段 UAVSAR 重复通量干涉测量法
The Cryosphere Pub Date : 2024-02-12 DOI: 10.5194/tc-18-575-2024
Zachary Hoppinen, S. Oveisgharan, Hans-Peter Marshall, Ross Mower, Kelly Elder, C. Vuyovich
{"title":"Snow water equivalent retrieval over Idaho – Part 2: Using L-band UAVSAR repeat-pass interferometry","authors":"Zachary Hoppinen, S. Oveisgharan, Hans-Peter Marshall, Ross Mower, Kelly Elder, C. Vuyovich","doi":"10.5194/tc-18-575-2024","DOIUrl":"https://doi.org/10.5194/tc-18-575-2024","url":null,"abstract":"Abstract. This study evaluates using interferometry on low-frequency synthetic aperture radar (SAR) images to monitor snow water equivalent (SWE) over seasonal and synoptic scales. We retrieved SWE changes from nine pairs of SAR images, mean 8 d temporal baseline, captured by an L-band aerial platform, NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR), over central Idaho as part of the NASA SnowEx 2020 and 2021 campaigns. The retrieved SWE changes were compared against coincident in situ measurements (SNOTEL and snow pits from the SnowEx field campaign) and to 100 m gridded SnowModel modeled SWE changes. The comparison of in situ to retrieved measurements shows a strong Pearson correlation (R=0.80) and low RMSE (0.1 m, n=64) for snow depth change and similar results for SWE change (RMSE = 0.04 m, R=0.52, n=57). The comparison between retrieved SWE changes to SnowModel SWE change also showed good correlation (R=0.60, RMSD = 0.023 m, n=3.2×106) and especially high correlation for a subset of pixels with no modeled melt and low tree coverage (R=0.72, RMSD = 0.013 m, n=6.5×104). Finally, we bin the retrievals for a variety of factors and show decreasing correlation between the modeled and retrieved values for lower elevations, higher incidence angles, higher tree percentages and heights, and greater cumulative melt. This study builds on previous interferometry work by using a full winter season time series of L-band SAR images over a large spatial extent to evaluate the accuracy of SWE change retrievals against both in situ and modeled results and the controlling factors of the retrieval accuracy.\u0000","PeriodicalId":509217,"journal":{"name":"The Cryosphere","volume":"57 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139784752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent warming trends of the Greenland ice sheet documented by historical firn and ice temperature observations and machine learning 通过历史枞树和冰温观测及机器学习记录格陵兰冰盖的近期变暖趋势
The Cryosphere Pub Date : 2024-02-12 DOI: 10.5194/tc-18-609-2024
B. Vandecrux, R. Fausto, J. Box, F. Covi, R. Hock, Å. Rennermalm, A. Heilig, Jakob Abermann, D. van As, E. Bjerre, X. Fettweis, P. Smeets, P. Kuipers Munneke, M. R. van den Broeke, M. Brils, P. Langen, R. Mottram, A. Ahlstrøm
{"title":"Recent warming trends of the Greenland ice sheet documented by historical firn and ice temperature observations and machine learning","authors":"B. Vandecrux, R. Fausto, J. Box, F. Covi, R. Hock, Å. Rennermalm, A. Heilig, Jakob Abermann, D. van As, E. Bjerre, X. Fettweis, P. Smeets, P. Kuipers Munneke, M. R. van den Broeke, M. Brils, P. Langen, R. Mottram, A. Ahlstrøm","doi":"10.5194/tc-18-609-2024","DOIUrl":"https://doi.org/10.5194/tc-18-609-2024","url":null,"abstract":"Abstract. Surface melt on the Greenland ice sheet has been increasing in intensity and extent over the last decades due to Arctic atmospheric warming. Surface melt depends on the surface energy balance, which includes the atmospheric forcing but also the thermal budget of the snow, firn and ice near the ice sheet surface. The temperature of the ice sheet subsurface has been used as an indicator of the thermal state of the ice sheet's surface. Here, we present a compilation of 4612 measurements of firn and ice temperature at 10 m below the surface (T10 m) across the ice sheet, spanning from 1912 to 2022. The measurements are either instantaneous or monthly averages. We train an artificial neural network model (ANN) on 4597 of these point observations, weighted by their relative representativity, and use it to reconstruct T10 m over the entire Greenland ice sheet for the period 1950–2022 at a monthly timescale. We use 10-year averages and mean annual values of air temperature and snowfall from the ERA5 reanalysis dataset as model input. The ANN indicates a Greenland-wide positive trend of T10 m at 0.2 ∘C per decade during the 1950–2022 period, with a cooling during 1950–1985 (−0.4 ∘C per decade) followed by a warming during 1985–2022 (+0.7 ∘ per decade). Regional climate models HIRHAM5, RACMO2.3p2 and MARv3.12 show mixed results compared to the observational T10 m dataset, with mean differences ranging from −0.4 ∘C (HIRHAM) to 1.2 ∘C (MAR) and root mean squared differences ranging from 2.8 ∘C (HIRHAM) to 4.7 ∘C (MAR). The observation-based ANN also reveals an underestimation of the subsurface warming trends in climate models for the bare-ice and dry-snow areas. The subsurface warming brings the Greenland ice sheet surface closer to the melting point, reducing the amount of energy input required for melting. Our compilation documents the response of the ice sheet subsurface to atmospheric warming and will enable further improvements of models used for ice sheet mass loss assessment and reduce the uncertainty in projections.\u0000","PeriodicalId":509217,"journal":{"name":"The Cryosphere","volume":"360 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139842780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extreme events of snow grain size increase in East Antarctica and their relationship with meteorological conditions 南极洲东部雪粒增大的极端事件及其与气象条件的关系
The Cryosphere Pub Date : 2024-02-12 DOI: 10.5194/tc-18-593-2024
Claudio Stefanini, G. Macelloni, M. Leduc-Leballeur, Vincent Favier, Benjamin Pohl, G. Picard
{"title":"Extreme events of snow grain size increase in East Antarctica and their relationship with meteorological conditions","authors":"Claudio Stefanini, G. Macelloni, M. Leduc-Leballeur, Vincent Favier, Benjamin Pohl, G. Picard","doi":"10.5194/tc-18-593-2024","DOIUrl":"https://doi.org/10.5194/tc-18-593-2024","url":null,"abstract":"Abstract. This study explores the seasonal variations in snow grain size on the East Antarctic Plateau, where dry metamorphism occurs, by using microwave radiometer observations from 2000 to 2022. Local meteorological conditions and large-scale atmospheric phenomena have been considered in order to explain some peculiar changes in the snow grains. We find that the highest ice divide is the region with the largest grain size in the summer, mainly because the wind speed is low. Moreover, some extreme grain size values with respect to the average (over +3σ) were identified. In these cases, the ERA5 reanalysis revealed a high-pressure blocking close to the onsets of the summer increase in the grain size. It channels moisture intrusions from the mid-latitudes, through atmospheric rivers that cause major snowfall events over the plateau. If conditions of weak wind and low temperature occur during the following weeks, dry snow metamorphism is facilitated, leading to grain growth. This determines anomalous high maximums of the snow grain size at the end of summer. These phenomena confirm the importance of moisture intrusion events in East Antarctica and their impact on the physical properties of the ice sheet surface, with a co-occurrence of atmospheric rivers and seasonal changes in the grain size with a significance of over 95 %.\u0000","PeriodicalId":509217,"journal":{"name":"The Cryosphere","volume":"74 33","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139843777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Snow water equivalent retrieval over Idaho – Part 1: Using Sentinel-1 repeat-pass interferometry 爱达荷州上空的雪水当量检索 - 第一部分:使用哨兵-1 重复通干涉测量法
The Cryosphere Pub Date : 2024-02-12 DOI: 10.5194/tc-18-559-2024
S. Oveisgharan, Robert Zinke, Zachary Hoppinen, Hans Peter Marshall
{"title":"Snow water equivalent retrieval over Idaho – Part 1: Using Sentinel-1 repeat-pass interferometry","authors":"S. Oveisgharan, Robert Zinke, Zachary Hoppinen, Hans Peter Marshall","doi":"10.5194/tc-18-559-2024","DOIUrl":"https://doi.org/10.5194/tc-18-559-2024","url":null,"abstract":"Abstract. Snow water equivalent (SWE) is identified as the key element of the snowpack that impacts rivers' streamflow and water cycle. Both active and passive microwave remote sensing methods have been used to retrieve SWE, but there does not currently exist a SWE product that provides useful estimates in mountainous terrain. Active sensors provide higher-resolution observations, but the suitable radar frequencies and temporal repeat intervals have not been available until recently. Interferometric synthetic aperture radar (InSAR) has been shown to have the potential to estimate SWE change. In this study, we apply this technique to a long time series of 6 d temporal repeat Sentinel-1 C-band data from the 2020–2021 winter. The retrievals show statistically significant correlations both temporally and spatially with independent in situ measurements of SWE. The SWE change measurements vary between −5.3 and 9.4 cm over the entire time series and all the in situ stations. The Pearson correlation and RMSE between retrieved SWE change observations and in situ stations measurements are 0.8 and 0.93 cm, respectively. The total retrieved SWE in the entire 2020–2021 time series shows an SWE error of less than 2 cm for the nine in situ stations in the scene. Additionally, the retrieved SWE using Sentinel-1 data is well correlated with lidar snow depth data, with correlation of more than 0.47. Low temporal coherence is identified as the main reason for degrading the performance of SWE retrieval using InSAR data. We also show that the performance of the phase unwrapping algorithm degrades in regions with low temporal coherence. A higher frequency such as L-band improves the temporal coherence and SWE ambiguity. SWE retrieval using C-band Sentinel-1 data is shown to be successful, but faster revisit is required to avoid low temporal coherence. Global SWE retrieval using radar interferometry will have a great opportunity with the upcoming L-band 12 d repeat-pass NASA-ISRO Synthetic Aperture Radar (NISAR) data and the future 6 d repeat-pass Radar Observing System for Europe in L-band (ROSE-L) data.\u0000","PeriodicalId":509217,"journal":{"name":"The Cryosphere","volume":"13 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139783569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Recent warming trends of the Greenland ice sheet documented by historical firn and ice temperature observations and machine learning 通过历史枞树和冰温观测及机器学习记录格陵兰冰盖的近期变暖趋势
The Cryosphere Pub Date : 2024-02-12 DOI: 10.5194/tc-18-609-2024
B. Vandecrux, R. Fausto, J. Box, F. Covi, R. Hock, Å. Rennermalm, A. Heilig, Jakob Abermann, D. van As, E. Bjerre, X. Fettweis, P. Smeets, P. Kuipers Munneke, M. R. van den Broeke, M. Brils, P. Langen, R. Mottram, A. Ahlstrøm
{"title":"Recent warming trends of the Greenland ice sheet documented by historical firn and ice temperature observations and machine learning","authors":"B. Vandecrux, R. Fausto, J. Box, F. Covi, R. Hock, Å. Rennermalm, A. Heilig, Jakob Abermann, D. van As, E. Bjerre, X. Fettweis, P. Smeets, P. Kuipers Munneke, M. R. van den Broeke, M. Brils, P. Langen, R. Mottram, A. Ahlstrøm","doi":"10.5194/tc-18-609-2024","DOIUrl":"https://doi.org/10.5194/tc-18-609-2024","url":null,"abstract":"Abstract. Surface melt on the Greenland ice sheet has been increasing in intensity and extent over the last decades due to Arctic atmospheric warming. Surface melt depends on the surface energy balance, which includes the atmospheric forcing but also the thermal budget of the snow, firn and ice near the ice sheet surface. The temperature of the ice sheet subsurface has been used as an indicator of the thermal state of the ice sheet's surface. Here, we present a compilation of 4612 measurements of firn and ice temperature at 10 m below the surface (T10 m) across the ice sheet, spanning from 1912 to 2022. The measurements are either instantaneous or monthly averages. We train an artificial neural network model (ANN) on 4597 of these point observations, weighted by their relative representativity, and use it to reconstruct T10 m over the entire Greenland ice sheet for the period 1950–2022 at a monthly timescale. We use 10-year averages and mean annual values of air temperature and snowfall from the ERA5 reanalysis dataset as model input. The ANN indicates a Greenland-wide positive trend of T10 m at 0.2 ∘C per decade during the 1950–2022 period, with a cooling during 1950–1985 (−0.4 ∘C per decade) followed by a warming during 1985–2022 (+0.7 ∘ per decade). Regional climate models HIRHAM5, RACMO2.3p2 and MARv3.12 show mixed results compared to the observational T10 m dataset, with mean differences ranging from −0.4 ∘C (HIRHAM) to 1.2 ∘C (MAR) and root mean squared differences ranging from 2.8 ∘C (HIRHAM) to 4.7 ∘C (MAR). The observation-based ANN also reveals an underestimation of the subsurface warming trends in climate models for the bare-ice and dry-snow areas. The subsurface warming brings the Greenland ice sheet surface closer to the melting point, reducing the amount of energy input required for melting. Our compilation documents the response of the ice sheet subsurface to atmospheric warming and will enable further improvements of models used for ice sheet mass loss assessment and reduce the uncertainty in projections.\u0000","PeriodicalId":509217,"journal":{"name":"The Cryosphere","volume":"8 15","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139783081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disentangling the drivers of future Antarctic ice loss with a historically calibrated ice-sheet model 利用经历史校准的冰盖模型厘清未来南极冰层流失的驱动因素
The Cryosphere Pub Date : 2024-02-12 DOI: 10.5194/tc-18-653-2024
Violaine Coulon, A. Klose, C. Kittel, T. Edwards, Fiona Turner, R. Winkelmann, F. Pattyn
{"title":"Disentangling the drivers of future Antarctic ice loss with a historically calibrated ice-sheet model","authors":"Violaine Coulon, A. Klose, C. Kittel, T. Edwards, Fiona Turner, R. Winkelmann, F. Pattyn","doi":"10.5194/tc-18-653-2024","DOIUrl":"https://doi.org/10.5194/tc-18-653-2024","url":null,"abstract":"Abstract. We use an observationally calibrated ice-sheet model to investigate the future trajectory of the Antarctic ice sheet related to uncertainties in the future balance between sub-shelf melting and ice discharge, on the one hand, and the surface mass balance, on the other. Our ensemble of simulations, forced by a panel of climate models from the sixth phase of the Coupled Model Intercomparison Project (CMIP6), suggests that the ocean will be the primary driver of short-term Antarctic mass loss, initiating ice loss in West Antarctica already during this century. The atmosphere initially plays a mitigating role through increased snowfall, leading to an Antarctic contribution to global mean sea-level rise by 2100 of 6 (−8 to 15) cm under a low-emission scenario and 5.5 (−10 to 16) cm under a very high-emission scenario. However, under the very high-emission pathway, the influence of the atmosphere shifts beyond the end of the century, becoming an amplifying driver of mass loss as the ice sheet's surface mass balance decreases. We show that this transition occurs when Antarctic near-surface warming exceeds a critical threshold of +7.5 ∘C, at which the increase in surface runoff outweighs the increase in snow accumulation, a signal that is amplified by the melt–elevation feedback. Therefore, under the very high-emission scenario, oceanic and atmospheric drivers are projected to result in a complete collapse of the West Antarctic ice sheet along with significant grounding-line retreat in the marine basins of the East Antarctic ice sheet, leading to a median global mean sea-level rise of 2.75 (6.95) m by 2300 (3000). Under a more sustainable socio-economic pathway, we find that the Antarctic ice sheet may still contribute to a median global mean sea-level rise of 0.62 (1.85) m by 2300 (3000). However, the rate of sea-level rise is significantly reduced as mass loss is likely to remain confined to the Amundsen Sea Embayment, where present-day climate conditions seem sufficient to commit to a continuous retreat of Thwaites Glacier.\u0000","PeriodicalId":509217,"journal":{"name":"The Cryosphere","volume":"74 29","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139843780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信