Yan Jin, Jing Li, Zhuyao Fan, Xian Hua, Ting Wang, Shunlan Du, Xugang Xi, Lihua Li
{"title":"Recognition of regions of stroke injury using multi-modal frequency features of electroencephalogram","authors":"Yan Jin, Jing Li, Zhuyao Fan, Xian Hua, Ting Wang, Shunlan Du, Xugang Xi, Lihua Li","doi":"10.3389/fnins.2024.1404816","DOIUrl":"https://doi.org/10.3389/fnins.2024.1404816","url":null,"abstract":"Nowadays, increasingly studies are attempting to analyze strokes in advance. The identification of brain damage areas is essential for stroke rehabilitation.We proposed Electroencephalogram (EEG) multi-modal frequency features to classify the regions of stroke injury. The EEG signals were obtained from stroke patients and healthy subjects, who were divided into right-sided brain injury group, left-sided brain injury group, bilateral brain injury group, and healthy controls. First, the wavelet packet transform was used to perform a time-frequency analysis of the EEG signal and extracted a set of features (denoted as WPT features). Then, to explore the nonlinear phase coupling information of the EEG signal, phase-locked values (PLV) and partial directed correlations (PDC) were extracted from the brain network, and the brain network produced a second set of features noted as functional connectivity (FC) features. Furthermore, we fused the extracted multiple features and used the resnet50 convolutional neural network to classify the fused multi-modal (WPT + FC) features.The classification accuracy of our proposed methods was up to 99.75%.The proposed multi-modal frequency features can be used as a potential indicator to distinguish regions of brain injury in stroke patients, and are potentially useful for the optimization of decoding algorithms for brain-computer interfaces.","PeriodicalId":509131,"journal":{"name":"Frontiers in Neuroscience","volume":" 69","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141365296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sierra Jaye, U. Sandau, Trevor J. McFarland, Randy L. Woltjer, J. Saugstad
{"title":"A clathrin mediated endocytosis scaffolding protein, Intersectin 1, changes in an isoform, brain region, and sex specific manner in Alzheimer’s disease","authors":"Sierra Jaye, U. Sandau, Trevor J. McFarland, Randy L. Woltjer, J. Saugstad","doi":"10.3389/fnins.2024.1426180","DOIUrl":"https://doi.org/10.3389/fnins.2024.1426180","url":null,"abstract":"Alzheimer’s disease (AD) is the most common form of dementia and is characterized by the accumulation of amyloid-beta (Aβ) plaques and neurofibrillary Tau tangles in the brain. We previously identified a set of candidate AD microRNAs (miRNAs) in human cerebrospinal fluid (CSF) and used a target prediction pipeline to identify mRNAs and pathways that could potentially be regulated by the miRNAs. Of these pathways, clathrin mediated endocytosis (CME) was selected for further investigation. CME is altered in multiple brain cell types in AD and is implicated in early cellular phenotypes such as enlarged early endosomes and pathogenic processing of Aβ. However, a comprehensive evaluation of major CME hub proteins in humans with AD across multiple brain regions is lacking. Thus, we used immunoblots to evaluate human post-mortem AD and control (CTL) frontal cortex (FC; AD n = 22, CTL n = 23) and hippocampus (HP; AD n = 34, CTL n = 22) for changes in Intersectin 1 (ITSN1), Phosphatidylinositol Binding Clathrin Assembly Protein gene (PICALM), Clathrin Light Chain (CLT), FCH and Mu Domain Containing Endocytic Adaptor 1 (FCHO1), Adaptor Related Protein Complex 2 (AP2) Subunit Alpha 1 (AP2A1), and Dynamin 2 (DNM2). Of these, we found that in AD, ITSN1-long (ITSN1-L) was decreased in the FC of males and HP of females, while ITSN1-short was increased in the HP of both males and females. We further evaluated ITSN1-L levels in cortex (CTX) and HP of the 5xFAD mouse model of Aβ pathology at different timepoints during aging and disease progression by immunoblot (n = 5–8 per group). At 3 months, female 5xFAD exhibited an increase of ITSN1-L in CTX but a decrease at 6 and 9 months. Additionally, immunofluorescent staining of 5xFAD primary HP neurons showed an increase of ITSN1-L in matured 5xFAD neurons at 21 and 28 days in vitro. Together, our studies show that in AD, isoforms of ITSN1 change in a brain region-and sex-dependent manner. Further, changes in ITSN1-L are transient with levels increasing during early Aβ accumulation and decreasing during later progression. These findings suggest that ITSN1 expression, and consequently CME activity, may change depending on the stage of disease progression.","PeriodicalId":509131,"journal":{"name":"Frontiers in Neuroscience","volume":" 426","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141364577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Galatolo, S. Rocchiccioli, N. Di Giorgi, Flavio Dal Canto, Giovanni Signore, Federica Morani, Elisa Ceccherini, S. Doccini, Filippo M. Santorelli
{"title":"Proteomics and lipidomic analysis reveal dysregulated pathways associated with loss of sacsin","authors":"D. Galatolo, S. Rocchiccioli, N. Di Giorgi, Flavio Dal Canto, Giovanni Signore, Federica Morani, Elisa Ceccherini, S. Doccini, Filippo M. Santorelli","doi":"10.3389/fnins.2024.1375299","DOIUrl":"https://doi.org/10.3389/fnins.2024.1375299","url":null,"abstract":"Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a rare incurable neurodegenerative disease caused by mutations in the SACS gene, which codes for sacsin, a large protein involved in protein homeostasis, mitochondrial function, cytoskeletal dynamics, autophagy, cell adhesion and vesicle trafficking. However, the pathogenic mechanisms underlying sacsin dysfunction are still largely uncharacterized, and so attempts to develop therapies are still in the early stages.To achieve further understanding of how processes are altered by loss of sacsin, we used untargeted proteomics to compare protein profiles in ARSACS fibroblasts versus controls.Our analyses confirmed the involvement of known biological pathways and also implicated calcium and lipid homeostasis in ARSACS skin fibroblasts, a finding further verified in SH-SY5Y SACS–/– cells. Validation through mass spectrometry-based analysis and comparative quantification of lipids by LC-MS in fibroblasts revealed increased levels of ceramides coupled with a reduction of diacylglycerols.In addition to confirming aberrant Ca2+ homeostasis in ARSACS, this study described abnormal lipid levels associated with loss of sacsin.","PeriodicalId":509131,"journal":{"name":"Frontiers in Neuroscience","volume":" 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141371651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rong Guo, Shaolin Yang, H. Wiesner, Yudu Li, Yibo Zhao, Zhi-Pei Liang, Wei Chen, Xiao-Hong Zhu
{"title":"Mapping intracellular NAD content in entire human brain using phosphorus-31 MR spectroscopic imaging at 7 Tesla","authors":"Rong Guo, Shaolin Yang, H. Wiesner, Yudu Li, Yibo Zhao, Zhi-Pei Liang, Wei Chen, Xiao-Hong Zhu","doi":"10.3389/fnins.2024.1389111","DOIUrl":"https://doi.org/10.3389/fnins.2024.1389111","url":null,"abstract":"Nicotinamide adenine dinucleotide (NAD) is a crucial molecule in cellular metabolism and signaling. Mapping intracellular NAD content of human brain has long been of interest. However, the sub-millimolar level of cerebral NAD concentration poses significant challenges for in vivo measurement and imaging.In this study, we demonstrated the feasibility of non-invasively mapping NAD contents in entire human brain by employing a phosphorus-31 magnetic resonance spectroscopic imaging (31P-MRSI)-based NAD assay at ultrahigh field (7 Tesla), in combination with a probabilistic subspace-based processing method.The processing method achieved about a 10-fold reduction in noise over raw measurements, resulting in remarkably reduced estimation errors of NAD. Quantified NAD levels, observed at approximately 0.4 mM, exhibited good reproducibility within repeated scans on the same subject and good consistency across subjects in group data (2.3 cc nominal resolution). One set of higher-resolution data (1.0 cc nominal resolution) unveiled potential for assessing tissue metabolic heterogeneity, showing similar NAD distributions in white and gray matter. Preliminary analysis of age dependence suggested that the NAD level decreases with age.These results illustrate favorable outcomes of our first attempt to use ultrahigh field 31P-MRSI and advanced processing techniques to generate a whole-brain map of low-concentration intracellular NAD content in the human brain.","PeriodicalId":509131,"journal":{"name":"Frontiers in Neuroscience","volume":" 21","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141373053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Physical exercise regulates microglia in health and disease","authors":"Alexandra Strohm, A. Majewska","doi":"10.3389/fnins.2024.1420322","DOIUrl":"https://doi.org/10.3389/fnins.2024.1420322","url":null,"abstract":"There is a well-established link between physical activity and brain health. As such, the effectiveness of physical exercise as a therapeutic strategy has been explored in a variety of neurological contexts. To determine the extent to which physical exercise could be most beneficial under different circumstances, studies are needed to uncover the underlying mechanisms behind the benefits of physical activity. Interest has grown in understanding how physical activity can regulate microglia, the resident immune cells of the central nervous system. Microglia are key mediators of neuroinflammatory processes and play a role in maintaining brain homeostasis in healthy and pathological settings. Here, we explore the evidence suggesting that physical activity has the potential to regulate microglia activity in various animal models. We emphasize key areas where future research could contribute to uncovering the therapeutic benefits of engaging in physical exercise.","PeriodicalId":509131,"journal":{"name":"Frontiers in Neuroscience","volume":" 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141372233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Porcaro, Dario Seppi, Giovanni Pellegrino, Filippo Dainese, B. Kassabian, Luciano Pellegrino, Gianluigi De Nardi, Alberto Grego, Maurizio Corbetta, Florinda Ferreri
{"title":"Characterization of antiseizure medications effects on the EEG neurodynamic by fractal dimension","authors":"C. Porcaro, Dario Seppi, Giovanni Pellegrino, Filippo Dainese, B. Kassabian, Luciano Pellegrino, Gianluigi De Nardi, Alberto Grego, Maurizio Corbetta, Florinda Ferreri","doi":"10.3389/fnins.2024.1401068","DOIUrl":"https://doi.org/10.3389/fnins.2024.1401068","url":null,"abstract":"An important challenge in epilepsy is to define biomarkers of response to treatment. Many electroencephalography (EEG) methods and indices have been developed mainly using linear methods, e.g., spectral power and individual alpha frequency peak (IAF). However, brain activity is complex and non-linear, hence there is a need to explore EEG neurodynamics using nonlinear approaches. Here, we use the Fractal Dimension (FD), a measure of whole brain signal complexity, to measure the response to anti-seizure therapy in patients with Focal Epilepsy (FE) and compare it with linear methods.Twenty-five drug-responder (DR) patients with focal epilepsy were studied before (t1, named DR-t1) and after (t2, named DR-t2) the introduction of the anti-seizure medications (ASMs). DR-t1 and DR-t2 EEG results were compared against 40 age-matched healthy controls (HC).EEG data were investigated from two different angles: frequency domain—spectral properties in δ, θ, α, β, and γ bands and the IAF peak, and time-domain—FD as a signature of the nonlinear complexity of the EEG signals. Those features were compared among the three groups.The δ power differed between DR patients pre and post-ASM and HC (DR-t1 vs. HC, p < 0.01 and DR-t2 vs. HC, p < 0.01). The θ power differed between DR-t1 and DR-t2 (p = 0.015) and between DR-t1 and HC (p = 0.01). The α power, similar to the δ, differed between DR patients pre and post-ASM and HC (DR-t1 vs. HC, p < 0.01 and DR-t2 vs. HC, p < 0.01). The IAF value was lower for DR-t1 than DR-t2 (p = 0.048) and HC (p = 0.042). The FD value was lower in DR-t1 than in DR-t2 (p = 0.015) and HC (p = 0.011). Finally, Bayes Factor analysis showed that FD was 195 times more likely to separate DR-t1 from DR-t2 than IAF and 231 times than θ.FD measured in baseline EEG signals is a non-linear brain measure of complexity more sensitive than EEG power or IAF in detecting a response to ASMs. This likely reflects the non-oscillatory nature of neural activity, which FD better describes.Our work suggests that FD is a promising measure to monitor the response to ASMs in FE.","PeriodicalId":509131,"journal":{"name":"Frontiers in Neuroscience","volume":" 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141371017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel Bauersachs, Louise Bomholtz, Sara del Rey Mateos, Ralf Kühn, Pawel Lisowski
{"title":"Novel human neurodevelopmental and neurodegenerative disease associated with IRF2BPL gene variants—mechanisms and therapeutic avenues","authors":"Daniel Bauersachs, Louise Bomholtz, Sara del Rey Mateos, Ralf Kühn, Pawel Lisowski","doi":"10.3389/fnins.2024.1426177","DOIUrl":"https://doi.org/10.3389/fnins.2024.1426177","url":null,"abstract":"Recently a broad range of phenotypic abnormalities related to the neurodevelopmental and neurodegenerative disorder NEDAMSS (Neurodevelopmental Disorder with Regression, Abnormal Movements, Loss of Speech, and Seizures) have been associated with rare single-nucleotide polymorphisms (SNPs) or insertion and deletion variants (Indel) in the intron-less gene IRF2BPL. Up to now, 34 patients have been identified through whole exome sequencing carrying different heterozygous pathogenic variants spanning the intron-less gene from the first polyglutamine tract at the N-terminus to the C3HC4 RING domain of the C-terminus of the protein. As a result, the phenotypic spectrum of the patients is highly heterogeneous and ranges from abnormal neurocognitive development to severe neurodegenerative courses with developmental and seizure-related encephalopathies. While the treatment of IRF2BPL-related disorders has focused on alleviating the patient’s symptoms by symptomatic multidisciplinary management, there has been no prospect of entirely relieving the symptoms of the individual patients. Yet, the recent advancement of CRISPR-Cas9-derived gene editing tools, leading to the generation of base editors (BEs) and prime editors (PEs), provide an encouraging new therapeutic avenue for treating NEDAMSS and other neurodevelopmental and neurodegenerative diseases, which contain SNPs or smaller Indels in post-mitotic cell populations of the central nervous system, due to its ability to generate site-specific DNA sequence modifications without creating double-stranded breaks, and recruiting the non-homologous DNA end joining repair mechanism.","PeriodicalId":509131,"journal":{"name":"Frontiers in Neuroscience","volume":"132 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141376122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matin Ramzani Shahrestani, Sara Motamed, Mohammadreza Yamaghani
{"title":"Recognition of facial emotion based on SOAR model","authors":"Matin Ramzani Shahrestani, Sara Motamed, Mohammadreza Yamaghani","doi":"10.3389/fnins.2024.1374112","DOIUrl":"https://doi.org/10.3389/fnins.2024.1374112","url":null,"abstract":"Expressing emotions play a special role in daily communication, and one of the most essential methods in detecting emotions is to detect facial emotional states. Therefore, one of the crucial aspects of the natural human–machine interaction is the recognition of facial expressions and the creation of feedback, according to the perceived emotion.To implement each part of this model, two main steps have been introduced. The first step is reading the video and converting it to images and preprocessing on them. The next step is to use the combination of 3D convolutional neural network (3DCNN) and learning automata (LA) to classify and detect the rate of facial emotional recognition. The reason for choosing 3DCNN in our model is that no dimension is removed from the images, and considering the temporal information in dynamic images leads to more efficient and better classification. In addition, the training of the 3DCNN network in calculating the backpropagation error is adjusted by LA so that both the efficiency of the proposed model is increased, and the working memory part of the SOAR model can be implemented.Due to the importance of the topic, this article presents an efficient method for recognizing emotional states from facial images based on a mixed deep learning and cognitive model called SOAR. Among the objectives of the proposed model, it is possible to mention providing a model for learning the time order of frames in the movie and providing a model for better display of visual features, increasing the recognition rate. The accuracy of recognition rate of facial emotional states in the proposed model is 85.3%. To compare the effectiveness of the proposed model with other models, this model has been compared with competing models. By examining the results, we found that the proposed model has a better performance than other models.","PeriodicalId":509131,"journal":{"name":"Frontiers in Neuroscience","volume":"10 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140962686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaolei Chu, Shuaiyi Liu, Xiaoxuan Zhao, Tao Liu, Zheng Xing, Qingwen Li, Qi Li
{"title":"Case report: Virtual reality-based arm and leg cycling combined with transcutaneous electrical spinal cord stimulation for early treatment of a cervical spinal cord injured patient","authors":"Xiaolei Chu, Shuaiyi Liu, Xiaoxuan Zhao, Tao Liu, Zheng Xing, Qingwen Li, Qi Li","doi":"10.3389/fnins.2024.1380467","DOIUrl":"https://doi.org/10.3389/fnins.2024.1380467","url":null,"abstract":"Spinal cord injury is a condition affecting the central nervous system, causing different levels of dysfunction below the point of nerve damage. A 50-year-old woman suffered a neck injury as a result of a car accident. After undergoing posterior cervical C3–C6 internal fixation with titanium plates on one side and C7 lamina decompression, the patient, who had been diagnosed with C3–C7 cervical disk herniation and spinal stenosis causing persistent compression of the spinal cord, was transferred to the rehabilitation department. After implementing the combined therapy of Virtual Reality-based arm and leg cycling along with transcutaneous electrical stimulation of the spinal cord, the patients experienced a notable enhancement in both sensory and motor abilities as per the ASIA scores. The patient’s anxiety and depression were reduced as measured by the Hamilton Anxiety and Hamilton Depression Tests. As evaluated by the SCIM-III, the patient’s self-reliance and capacity to carry out everyday tasks showed ongoing enhancement, leading to the restoration of their functionality. Hence, the use of Virtual Reality-based arm and leg cycling along with transcutaneous electrical spinal cord stimulation has potential to positively impact function in patients with spinal cord injury. However, as this is a case report, the small number of patients and the fact that the intervention was initiated early after the injury, we were unable to separate the recovery due to the intervention from the natural recovery that is known to occur in the initial weeks and months after SCI. Therefore, further randomized controlled trials with a large sample size is necessary.","PeriodicalId":509131,"journal":{"name":"Frontiers in Neuroscience","volume":"2 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140963306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shehzaib Shafique, Walter Setti, Claudio Campus, Silvia Zanchi, Alessio Del Bue, Monica Gori
{"title":"How path integration abilities of blind people change in different exploration conditions","authors":"Shehzaib Shafique, Walter Setti, Claudio Campus, Silvia Zanchi, Alessio Del Bue, Monica Gori","doi":"10.3389/fnins.2024.1375225","DOIUrl":"https://doi.org/10.3389/fnins.2024.1375225","url":null,"abstract":"For animals to locate resources and stay safe, navigation is an essential cognitive skill. Blind people use different navigational strategies to encode the environment. Path integration significantly influences spatial navigation, which is the ongoing update of position and orientation during self-motion. This study examines two separate things: (i) how guided and non-guided strategies affect blind individuals in encoding and mentally representing a trajectory and (ii) the sensory preferences for potential navigational aids through questionnaire-based research. This study first highlights the significant role that the absence of vision plays in understanding body centered and proprioceptive cues. Furthermore, it also underscores the urgent need to develop navigation-assistive technologies customized to meet the specific needs of users.","PeriodicalId":509131,"journal":{"name":"Frontiers in Neuroscience","volume":"38 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140966279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}