{"title":"Paleostress and outcrop fracture analysis along Himalayan Foothills (Eastern Salt Range), Potwar Plateau, NW Himalaya, Pakistan","authors":"Hassan Mehmood","doi":"10.13168/AGG.2021.0013","DOIUrl":"https://doi.org/10.13168/AGG.2021.0013","url":null,"abstract":"The Salt Range (SR) is an ENE-WSW trending fault bend fold that form the range front of the Himalayan fold and thrust belt in Pakistan. The research is carried out in the Eastern Salt Range (ESR) with the objective to determine the paleostress inversion from reduced stress tensors by using fracture data. The surface morphology of the fold is predominantly shaped by Eocene limestone that provide best exposure of joint surfaces that can be used for kinematic and dynamic analysis. We adopted a classical circle inventory method in the field and collected orientation data (dip amount, direction, and strike) from 7 localities (outcrop stations) of the Eocene Sakesar Limestone. Three prominent fracture trends are present in the study area namely, FS-1; (E-W), FS-2; (ENE-WSW) and FS-3; (NNE-SSW). For stress analysis and data processing we used the Tensor Program of Delvaux and Sperner (2003) and calculated seven stress fields by the Right Dihedron Method. The orientations of the principal stress axes (ϭ1, ϭ2, ϭ3) and Stress Ratio (R) depicts ϭ1(Shmax) and ϭ2 are sub-horizontal while ϭ3 is vertical in all stress tensors. The paleostress results show that ϭ1(Shmax) oriented NNE-SSW belonging to a compressive regime. It is suggested that ϭ1 developed more or less perpendicular to the trend of SRT and other relevant structures in the Potwar Plateau.","PeriodicalId":50899,"journal":{"name":"Acta Geodynamica et Geomaterialia","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47727320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of surface changes from undermining and building site categorization: The case study in mining location Louky near Karvina","authors":"H. Doležalová","doi":"10.13168/AGG.2021.0009","DOIUrl":"https://doi.org/10.13168/AGG.2021.0009","url":null,"abstract":"Repeated geodetic observations were applied in mining location Louky near Karviná to detect surface changes from undermining in complex geo-mechanical conditions. Analyses of the subsidence magnitude and the length and direction of horizontal displacements showed that the subsidence trough was formed unevenly not only due to the position of the exploited local longwall panels and their different size but also showed a notable effect of the dominant tectonic fault. The significantly uneven development of the subsidence trough negatively affects line constructions. Terrain deformations of the road and stream pipeline were computed and classified into the building site categories according to the Czech standard ČSN 73 0039. The course of individual deformations in the monitored locality is influenced by a complex geo-mechanical situation. While the course of the subsidence curves is continuous at the observed pipeline and the classification of individual sections into building site categories corresponds with that, the road profile points out a more complex development of surface deformations. At the end of the observed period, 5 % of the profiles’ sections fell into category III (medium intensity), 49 % into category IV (moderate intensity) and 32 % stayed in category V (very moderate intensity of mining effects). ARTICLE INFO","PeriodicalId":50899,"journal":{"name":"Acta Geodynamica et Geomaterialia","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2021-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43847776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Water resources exploration and management based on remote sensing and geophysical data analysis: \u0000Al-Naqab Watershed, East Central Sinai, Egypt","authors":"U. Massoud","doi":"10.13168/AGG.2021.0008","DOIUrl":"https://doi.org/10.13168/AGG.2021.0008","url":null,"abstract":"This study integrates remote sensing and geophysical data to identify the hydrological conditions of the Naqab reservoir watershed. The main objectives of this study are identification and the interpretation of subsurface structures and their impact on groundwater flow, the relationships between structures and groundwater and the optimum way for watershed management in this sub-basin. Geophysical data including, ground magnetic survey and 1D electrical resistivity sounding helped in identifying the lithology and delineating zones of groundwater occurrence. The magnetic data delineated the basement rock, aided in characterizing the geometry of the subsurface structures that control the land surface features and constrain groundwater flow system. The interpreted subsurface structure elements include six sets of faults trending NE-SW, NW-SE, NWW-SEE, NEE-SWW, N-S and E-W. The basement depth was estimated at zero at the southern part and about 5187 m at the northern part. Two aquifer systems were characterized, the shallow aquifer of the Wata Formation (Upper Cretaceous) and the deep aquifer of the Malha Formation (Lower Cretaceous). The probability of groundwater occurrence increases towards the central part of the study area to north direction, where the thickness of the sedimentary basin reaches its maximum at the center of the study area. Different trends of faults were interpreted from the geo- electrical cross-sections along two transects. Three patterns of faults were characterized including step faults, graben faults and horst faults. These faults could be indicated on the geo-electrical section by a marked difference in the layers` thicknesses. The magnetic data confirmed the locations of the faults delineated by the electrical resistivity profiles. The outlined faults are trending mainly in NE-SW, NW-SE, NWW-SEE, NEE-SWW and E-W directions. Lineament structures delineation and drainage pattern analysis were evaluated and interpreted from the analysis of remote sensing (RS) data and geographic information system (GIS) technique. The SRTM-DEM (Shuttle Radar Topographic Mission-Digital Elevation Model) was also utilized to automatically identify and extract drainage network. Interpretation and analysis of the inferred lineament structures indicate the presence of a number of main lineament populations that trends: NE-SW, NW-SE, NNW-SSE, NWW-SEE, E-W and N-S. Meanwhile, the interpretation and analysis of drainage pattern network indicate the presence of three main lineament structures that trends: NW-SE, NE-SW and NWW-SEE. Azimuth distribution analysis of both the measured structures and drainage channels shows similar trends, except for very few differences in the prevailing trends. Similarity in orientation of lineament structures, drainage system, and subsurface structural trends were recognized in the area under study. In conclusion, the integration between remote sensing and geophysical data revealed a close matching between the surface st","PeriodicalId":50899,"journal":{"name":"Acta Geodynamica et Geomaterialia","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2021-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45854204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}