Quantitative Biology最新文献

筛选
英文 中文
Characterizing diseases using genetic and clinical variables: A data analytics approach 利用遗传和临床变量描述疾病特征:数据分析方法
Quantitative Biology Pub Date : 2024-05-15 DOI: 10.1002/qub2.46
Madhuri Gollapalli, Harsh Anand, Satish Mahadevan Srinivasan
{"title":"Characterizing diseases using genetic and clinical variables: A data analytics approach","authors":"Madhuri Gollapalli, Harsh Anand, Satish Mahadevan Srinivasan","doi":"10.1002/qub2.46","DOIUrl":"https://doi.org/10.1002/qub2.46","url":null,"abstract":"Predictive analytics is crucial in precision medicine for personalized patient care. To aid in precision medicine, this study identifies a subset of genetic and clinical variables that can serve as predictors for classifying diseased tissues/disease types. To achieve this, experiments were performed on diseased tissues obtained from the L1000 dataset to assess differences in the functionality and predictive capabilities of genetic and clinical variables. In this study, the k‐means technique was used for clustering the diseased tissue types, and the multinomial logistic regression (MLR) technique was applied for classifying the diseased tissue types. Dimensionality reduction techniques including principal component analysis and Boruta are used extensively to reduce the dimensionality of genetic and clinical variables. The results showed that landmark genes performed slightly better in clustering diseased tissue types compared to any random set of 978 non‐landmark genes, and the difference is statistically significant. Furthermore, it was evident that both clinical and genetic variables were important in predicting the diseased tissue types. The top three clinical predictors for predicting diseased tissue types were identified as morphology, gender, and age of diagnosis. Additionally, this study explored the possibility of using the latent representations of the clusters of landmark and non‐landmark genes as predictors for an MLR classifier. The classification models built using MLR revealed that landmark genes can serve as a subset of genetic variables and/or as a proxy for clinical variables. This study concludes that combining predictive analytics with dimensionality reduction effectively identifies key predictors in precision medicine, enhancing diagnostic accuracy.","PeriodicalId":508846,"journal":{"name":"Quantitative Biology","volume":"55 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140975906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hierarchical learning of gastric cancer molecular subtypes by integrating multi‐modal DNA‐level omics data and clinical stratification 通过整合多模态 DNA 级全息数据和临床分层,对胃癌分子亚型进行分层学习
Quantitative Biology Pub Date : 2024-05-13 DOI: 10.1002/qub2.45
Binyu Yang, Siying Liu, Jiemin Xie, Xi Tang, Pan Guan, Yifan Zhu, Xuemei Liu, Yunhui Xiong, Zuli Yang, Weiyao Li, Yonghua Wang, Wen Chen, Qingjiao Li, Li C. Xia
{"title":"Hierarchical learning of gastric cancer molecular subtypes by integrating multi‐modal DNA‐level omics data and clinical stratification","authors":"Binyu Yang, Siying Liu, Jiemin Xie, Xi Tang, Pan Guan, Yifan Zhu, Xuemei Liu, Yunhui Xiong, Zuli Yang, Weiyao Li, Yonghua Wang, Wen Chen, Qingjiao Li, Li C. Xia","doi":"10.1002/qub2.45","DOIUrl":"https://doi.org/10.1002/qub2.45","url":null,"abstract":"Molecular subtyping of gastric cancer (GC) aims to comprehend its genetic landscape. However, the efficacy of current subtyping methods is hampered by their mixed use of molecular features, a lack of strategy optimization, and the limited availability of public GC datasets. There is a pressing need for a precise and easily adoptable subtyping approach for early DNA‐based screening and treatment. Based on TCGA subtypes, we developed a novel DNA‐based hierarchical classifier for gastric cancer molecular subtyping (HCG), which employs gene mutations, copy number aberrations, and methylation patterns as predictors. By incorporating the closely related esophageal adenocarcinomas dataset, we expanded the TCGA GC dataset for the training and testing of HCG (n = 453). The optimization of HCG was achieved through three hierarchical strategies using Lasso‐Logistic regression, evaluated by their overall the area under receiver operating characteristic curve (auROC), accuracy, F1 score, the area under precision‐recall curve (auPRC) and their capability for clinical stratification using multivariate survival analysis. Subtype‐specific DNA alteration biomarkers were discerned through difference tests based on HCG defined subtypes. Our HCG classifier demonstrated superior performance in terms of overall auROC (0.95), accuracy (0.88), F1 score (0.87) and auPRC (0.86), significantly improving the clinical stratification of patients (overall p‐value = 0.032). Difference tests identified 25 subtype‐specific DNA alterations, including a high mutation rate in the SYNE1, ITGB4, and COL22A1 genes for the MSI subtype, and hypermethylation of ALS2CL, KIAA0406, and RPRD1B genes for the EBV subtype. HCG is an accurate and robust classifier for DNA‐based GC molecular subtyping with highly predictive clinical stratification performance. The training and test datasets, along with the analysis programs of HCG, are accessible on the GitHub website (github.com/LabxSCUT).","PeriodicalId":508846,"journal":{"name":"Quantitative Biology","volume":"77 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140984647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NeoHunter: Flexible software for systematically detecting neoantigens from sequencing data NeoHunter:从测序数据中系统检测新抗原的灵活软件
Quantitative Biology Pub Date : 2024-01-22 DOI: 10.1002/qub2.28
Tianxing Ma, Zetong Zhao, Haochen Li, Lei Wei, Xuegong Zhang
{"title":"NeoHunter: Flexible software for systematically detecting neoantigens from sequencing data","authors":"Tianxing Ma, Zetong Zhao, Haochen Li, Lei Wei, Xuegong Zhang","doi":"10.1002/qub2.28","DOIUrl":"https://doi.org/10.1002/qub2.28","url":null,"abstract":"Complicated molecular alterations in tumors generate various mutant peptides. Some of these mutant peptides can be presented to the cell surface and then elicit immune responses, and such mutant peptides are called neoantigens. Accurate detection of neoantigens could help to design personalized cancer vaccines. Although some computational frameworks for neoantigen detection have been proposed, most of them can only detect SNV‐ and indel‐derived neoantigens. In addition, current frameworks adopt oversimplified neoantigen prioritization strategies. These factors hinder the comprehensive and effective detection of neoantigens. We developed NeoHunter, flexible software to systematically detect and prioritize neoantigens from sequencing data in different formats. NeoHunter can detect not only SNV‐ and indel‐derived neoantigens but also gene fusion‐ and aberrant splicing‐derived neoantigens. NeoHunter supports both direct and indirect immunogenicity evaluation strategies to prioritize candidate neoantigens. These strategies utilize binding characteristics, existing biological big data, and T‐cell receptor specificity to ensure accurate detection and prioritization. We applied NeoHunter to the TESLA dataset, cohorts of melanoma and non‐small cell lung cancer patients. NeoHunter achieved high performance across the TESLA cancer patients and detected 79% (27 out of 34) of validated neoantigens in total. SNV‐ and indel‐derived neoantigens accounted for 90% of the top 100 candidate neoantigens while neoantigens from aberrant splicing accounted for 9%. Gene fusion‐derived neoantigens were detected in one patient. NeoHunter is a powerful tool to ‘catch all’ neoantigens and is available for free academic use on Github (XuegongLab/NeoHunter).","PeriodicalId":508846,"journal":{"name":"Quantitative Biology","volume":"8 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139608341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Re‐examination of statistical relationships between dietary fats and other risk factors, and cardiovascular disease, based on two crucial datasets 基于两个重要数据集,重新审视膳食脂肪和其他风险因素与心血管疾病之间的统计关系
Quantitative Biology Pub Date : 2024-01-22 DOI: 10.1002/qub2.29
Jiarui Ou, Le Zhang, Xiaoli Ru
{"title":"Re‐examination of statistical relationships between dietary fats and other risk factors, and cardiovascular disease, based on two crucial datasets","authors":"Jiarui Ou, Le Zhang, Xiaoli Ru","doi":"10.1002/qub2.29","DOIUrl":"https://doi.org/10.1002/qub2.29","url":null,"abstract":"Cardiovascular disease (CVD) is the major cause of death in many regions around the world, and several of its risk factors might be linked to diets. To improve public health and the understanding of this topic, we look at the recent Minnesota Coronary Experiment (MCE) analysis that used t‐test and Cox model to evaluate CVD risks. However, these parametric methods might suffer from three problems: small sample size, right‐censored bias, and lack of long‐term evidence. To overcome the first of these challenges, we utilize a nonparametric permutation test to examine the relationship between dietary fats and serum total cholesterol. To address the second problem, we use a resampling‐based rank test to examine whether the serum total cholesterol level affects CVD deaths. For the third issue, we use some extra‐Framingham Heart Study (FHS) data with an A/B test to look for meta‐relationship between diets, risk factors, and CVD risks. We show that, firstly, the link between low saturated fat diets and reduction in serum total cholesterol is strong. Secondly, reducing serum total cholesterol does not robustly have an impact on CVD hazards in the diet group. Lastly, the A/B test result suggests a more complicated relationship regarding abnormal diastolic blood pressure ranges caused by diets and how these might affect the associative link between the cholesterol level and heart disease risks. This study not only helps us to deeply analyze the MCE data but also, in combination with the long‐term FHS data, reveals possible complex relationships behind diets, risk factors, and heart disease.","PeriodicalId":508846,"journal":{"name":"Quantitative Biology","volume":"31 50","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139607703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信