{"title":"Detachment and flow behaviour of anode slimes in high nickel copper electrorefining","authors":"Mika Sahlman, J. Aromaa, Mari Lundström","doi":"10.37190/ppmp/186194","DOIUrl":"https://doi.org/10.37190/ppmp/186194","url":null,"abstract":"Most of the world’s copper is produced via copper electrorefining, where nickel is the most abundant impurity in the process. Previously it has been suggested that nickel affects the adhesion of anode slimes on the anode as well as the porosity of the slime layer that forms. This paper investigates the effects of nickel, oxygen, sulphuric acid and temperature on the detachment of anode slimes from the anode surface. The detachment of particles as a function of both anode and electrolyte composition was studied on laboratory scale using a camera connected to a Raspberry Pi, and particle detection and movement analysed using TrackPy. The results revealed four different slime detachment mechanisms: cloud formation, individual particle detachment, cluster detachment and avalanche. These were found to be dependent on the electrolyte (0, 10, 20, 30 g/dm3 Ni2+ & 100, 200 g/dm3 H2SO4), with increasing nickel concentration promoting cluster detachment and increasing sulphuric acid concentration favouring detachment of individual particles. Anode composition (0.05-0.44 wt% O and 0.07-0.64 wt% Ni) was shown to affect the flow direction of anode slimes, with increasing nickel leading to more upward-flowing slimes. Typical particle movement velocities were from -0.5 to 1.0 mm/s regardless of the electrolyte and anode composition, and regardless of the operating temperature (25 °C & 60 °C) for small particles (<0.5 mm). The results also support previous findings that increasing the nickel concentration of the electrolyte leads to a more porous anode slime layer on the anode.","PeriodicalId":508651,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":"134 4‐6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140228564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Claudio Acuña, Camila Aedo, C. Leiva, Víctor Flores
{"title":"The effect of water quality change on copper flotation","authors":"Claudio Acuña, Camila Aedo, C. Leiva, Víctor Flores","doi":"10.37190/ppmp/186190","DOIUrl":"https://doi.org/10.37190/ppmp/186190","url":null,"abstract":"Given the significant consumption and future demand for water resources, this paper intends to find the conditions for using a flotation process with different water quality. One of the alternatives is using water under secondary treatment with industrial water mixtures to partly recycle domestic wastewater and maximize metallurgical benefits. Results show that using wastewater (only with secondary treatment) in flotation is detrimental to copper recovery. However, molybdenum recovery is significantly improved. For mixtures with 50 [%] wastewater, 50 [ppm] frother, 20 [ppm] collector, and pH 10, copper recovery decrease amounts to 0.4 [%], while molybdenum shows a 2.4 [%] recovery increase. In addition, copper concentrate grade decreases by 1.4 [%], while molybdenum grade remains. Therefore, using wastewater is viable, particularly in the case of molybdenum. So, this study proposes using of water mixtures in the copper depression stage to improve molybdenum recovery.","PeriodicalId":508651,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140230084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adsorption behavior of poly(ethylene oxide) on kaolinite: Experimental and molecular simulation study","authors":"Tingting Wang, Jing Wang, Mingqing Zhang, Haijun Zhang, Bingfeng Liu, Jihui Li","doi":"10.37190/ppmp/185900","DOIUrl":"https://doi.org/10.37190/ppmp/185900","url":null,"abstract":"Poly(ethylene oxide) (PEO) adsorption behavior on kaolinite surfaces in an aqueous solution was investigated through experiments, the density functional theory (DFT), and molecular dynamics (MD) simulations. The experimental results showed that as the PEO concentration increased, the adsorption capacity first increased then slightly decreased and the turbidity change was opposite. The adsorption isotherm on the kaolinite surface was more suitable for the Langmuir model and valid for single-layer adsorption. The results of simulations showed that the PEO chains extended along the two basal surfaces of kaolinite or were partly adsorbed, forming loops and tails that caused most of the particles to flocculate, contributing to the turbidity lowering. When the number of PEO chains was excessive, their self- and inter-aggregation occured with some PEO far from the surface, and the turbidity increased. On the kaolinite (001) surface, the hydrogen bonds between the PEO ether O and the hydroxyl groups constituted the main interaction mechanism. However, the hydrophobic force of the (CH2–CH2)–moiety of PEO might have dominated its adsorption on the (001 ̅) surface. The hydrogen bonds were stronger than the hydrophobic interactions.","PeriodicalId":508651,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":"20 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140255147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Artificial neural network (ANN) modelling to estimate bubble size from macroscopic image and object features","authors":"L. Vinnett, Roberto León, Diego Mesa","doi":"10.37190/ppmp/185759","DOIUrl":"https://doi.org/10.37190/ppmp/185759","url":null,"abstract":"Bubble size measurements in aerated systems such as froth flotation cells are critical for controlling gas dispersion. Commonly, bubbles are measured by obtaining representative photographs, which are then analyzed using segmentation and identification software tools. Recent developments have focused on enhancing these segmentation tools. However, the main challenges around complex bubble cluster segmentation remain unresolved, while the tools to tackle these challenges have become increasingly complex and computationally expensive. In this work, we propose an alternative solution, circumventing the need for image segmentation and bubble identification. An Artificial Neural Network (ANN) was trained to estimate the Sauter mean bubble size (D32) based on macroscopic image features obtained with simple and inexpensive image analysis. The results showed excellent prediction accuracy, with a correlation coefficient, R, over 0.998 in the testing stage, and without bias in its error distribution. This machine learning tool paves the way for robust and fast estimation of bubble size under complex bubble images, without the need of image segmentation.","PeriodicalId":508651,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":"25 18","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140260634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Flotation performance of a novel collector, ethyl o-mesitylsulfonylacetohydroxamate, for bastnaesite ores","authors":"Yuli Di, Xiankui Liu, Xia He, Hao Zhang, Haiyan Huang, Cheng Wang, Yu Jiao","doi":"10.37190/ppmp/185550","DOIUrl":"https://doi.org/10.37190/ppmp/185550","url":null,"abstract":"Existing collectors used in the flotation process of bastnaesite ores are characterized by the poor flotation performance and low recovery. In this paper, from the perspective of molecular structure, ethyl O-mesitylsulfonylacetohydroxamate (C1) was selected as a novel collector for bastnaesite ores, and compared with the most commonly used collector, salicylhydroxamic acid (C2), in the flotation test with bastnaesite ore with fine mineral particles, complex embedding and a high mud content. The flotation test confirmed that C1 had the better collection ability and flotation performance than C2. Then, the adsorption mechanisms between collectors (C1 and C2) and bastnaesite surface were explored based on first principles thinking. The adsorption energies between collectors (C1 and C2) and the (110) plane of bastnaesite were respectively calculated as -1.79 eV and -1.44 eV and corresponding adsorption heights were respectively 1.65 Å and 2.43 Å. These data indicated that C1 had the better affinity to the (110) plane of bastnaesite and the better binding. The calculation results of partial density of states (PDOS) showed that both collectors underwent significant orbital hybridization with the (110) plane of bastnaesite, suggesting strong electronic interactions.","PeriodicalId":508651,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":"22 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140082835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Application of dodecyl amine/dodium petroleum sulfonate mixed collector in quartz-feldspar flotation separation","authors":"Yuhao He, Zijie Ren, Huimin Zhu, Mingyang Li, Renjun Zheng, Yuhan Song, Zhijie Chen","doi":"10.37190/ppmp/185553","DOIUrl":"https://doi.org/10.37190/ppmp/185553","url":null,"abstract":"It’s highly challenging to separate feldspar from quartz by flotation owing to their similar crystal structure and physicochemical properties. Using mixed collectors has become a promising method to improve the quartz-feldspar separation. In this study, mixed dodecyl amine (DDA) and sodium petroleum sulfonate (SPS) surfactants were used in the flotation separation of feldspar and quartz, and the adsorption mechanism of mixed collectors and depression mechanisms of two depressants were investigated through zeta potential, contact angle and Fourier transform infrared (FT-IR) spectra. When the pH reached 4.5, the separation of feldspar from quartz was more obvious. In the presence of DDA/SPS collector, the contact angle of feldspar was increased more obviously leading to enhance hydrophobicity. The infrared spectra revealed the interaction of collectors on feldspar surface involved physical and chemical adsorption, whereas the adsorption of collector on quartz was only physical interactions. The use of sodium hexametaphosphate resulted in a significantly enhanced separation performance. The weaker physical adsorption of mixed collector on quartz can be destroyed by sodium hexametaphosphate. This study is beneficial for understanding the collect mechanisms of mixed cationic-anionic surfactants on quartz and feldspar minerals, and promotes the development of advanced feldspar separation techniques.","PeriodicalId":508651,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":"116 45","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140088298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amir Mousa Soufiabadi, Reza Dehghan, Milad Nejadaria, Mehdi Safari, A. Hassanzadeh, H. Khoshdast
{"title":"Effect of different process water sources on rougher flotation efficiency of a copper ore: A case study at Sarcheshmeh Copper Complex (Iran)","authors":"Amir Mousa Soufiabadi, Reza Dehghan, Milad Nejadaria, Mehdi Safari, A. Hassanzadeh, H. Khoshdast","doi":"10.37190/ppmp/184087","DOIUrl":"https://doi.org/10.37190/ppmp/184087","url":null,"abstract":"In this research, the effect of different sources of process water on the flotation efficiency of copper sulfide ore prepared from the Sarcheshmeh copper mine was investigated. For this purpose, samples of fresh water to the plant, overflows of copper-molybdenum concentrate thickener, copper concentrate thickener, and recycled water pool as well as a mixture of fresh water and recycled water were prepared and characterized. Flotation tests were performed under the same conditions as the plant’s rougher circuit and were kept constant during all experiments. Grade and recovery of copper, iron, molybdenum, and silica were selected as the metallurgical response of flotation tests. The results were subjected to statistical analysis to assess the relative significance of which water source affects the flotation performance as evaluated from the experimental results. The results showed that the copper concentrate thickener overflow had the greatest effect on the flotation efficiency, so the grade and recovery decreased by about 10% and 75% for copper, and 10% and 6% for iron in the concentrate, respectively, while the grade and recovery increased up to 0.1% and 12% for silica, and 3% and 25% for molybdenum, respectively. The reason for this effect was attributed to the high content of suspended solid particles, and Cu2+, Mo2+, and Fe2+ cations in this water source that increased the coating effect over gangue minerals and entrainment rate. The improvement of molybdenum flotation was also ascribed to the possible presence of residual diesel oil from the flotation process in the plant. Due to the relatively equal amount in all sources of process water, the effect of anions and ions of dissolved salts was difficult.","PeriodicalId":508651,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":"53 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139775465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amir Mousa Soufiabadi, Reza Dehghan, Milad Nejadaria, Mehdi Safari, A. Hassanzadeh, H. Khoshdast
{"title":"Effect of different process water sources on rougher flotation efficiency of a copper ore: A case study at Sarcheshmeh Copper Complex (Iran)","authors":"Amir Mousa Soufiabadi, Reza Dehghan, Milad Nejadaria, Mehdi Safari, A. Hassanzadeh, H. Khoshdast","doi":"10.37190/ppmp/184087","DOIUrl":"https://doi.org/10.37190/ppmp/184087","url":null,"abstract":"In this research, the effect of different sources of process water on the flotation efficiency of copper sulfide ore prepared from the Sarcheshmeh copper mine was investigated. For this purpose, samples of fresh water to the plant, overflows of copper-molybdenum concentrate thickener, copper concentrate thickener, and recycled water pool as well as a mixture of fresh water and recycled water were prepared and characterized. Flotation tests were performed under the same conditions as the plant’s rougher circuit and were kept constant during all experiments. Grade and recovery of copper, iron, molybdenum, and silica were selected as the metallurgical response of flotation tests. The results were subjected to statistical analysis to assess the relative significance of which water source affects the flotation performance as evaluated from the experimental results. The results showed that the copper concentrate thickener overflow had the greatest effect on the flotation efficiency, so the grade and recovery decreased by about 10% and 75% for copper, and 10% and 6% for iron in the concentrate, respectively, while the grade and recovery increased up to 0.1% and 12% for silica, and 3% and 25% for molybdenum, respectively. The reason for this effect was attributed to the high content of suspended solid particles, and Cu2+, Mo2+, and Fe2+ cations in this water source that increased the coating effect over gangue minerals and entrainment rate. The improvement of molybdenum flotation was also ascribed to the possible presence of residual diesel oil from the flotation process in the plant. Due to the relatively equal amount in all sources of process water, the effect of anions and ions of dissolved salts was difficult.","PeriodicalId":508651,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":"363 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139835190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of dry-wet alternation on the adsorption of dissolved organic matter by soil minerals","authors":"Huixiong Hu, Xu Zhou, Wei Dai, Yaning Luan","doi":"10.37190/ppmp/183882","DOIUrl":"https://doi.org/10.37190/ppmp/183882","url":null,"abstract":"Dry-wet alternation has an essential effect on soil minerals' adsorption of dissolved organic matter. In this study, kaolin, illite, and hematite were subjected to 0, 1, 3, and 6 dry-wet alternation incubation tests, respectively, and the changes in the characterization of the three minerals were explored by using a BET specific surface area analyzer and an X-ray diffractometer. The effects of different dry-wet alternation treatments on the adsorption of tannic acid and glucose as the representatives of dissolved organic matter were investigated by isothermal and kinetic adsorption tests as well as by different model-fitting methods. The effects of different dry-wet alternation treatments on the adsorption of tannic acid and glucose by the three minerals were investigated by isothermal and kinetic adsorption tests and different model fitting methods. The results showed that alternating dry-wet treatment could change the three minerals' specific surface area and average pore diameter to different degrees. Still, the spacing of the crystal layers did not change significantly. The dry-wet alternation did not alter the adsorption process and tannic acid and glucose adsorption mode. Still, it affected the equilibrium adsorption amount to different degrees, which was illite>hematite>kaolin, and the intensity of the effect was mainly affected by the decrease of the specific surface area of the minerals, which was not related to the change of the average pore diameter and the spacing of the crystal layers.","PeriodicalId":508651,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":" 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139786859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of dry-wet alternation on the adsorption of dissolved organic matter by soil minerals","authors":"Huixiong Hu, Xu Zhou, Wei Dai, Yaning Luan","doi":"10.37190/ppmp/183882","DOIUrl":"https://doi.org/10.37190/ppmp/183882","url":null,"abstract":"Dry-wet alternation has an essential effect on soil minerals' adsorption of dissolved organic matter. In this study, kaolin, illite, and hematite were subjected to 0, 1, 3, and 6 dry-wet alternation incubation tests, respectively, and the changes in the characterization of the three minerals were explored by using a BET specific surface area analyzer and an X-ray diffractometer. The effects of different dry-wet alternation treatments on the adsorption of tannic acid and glucose as the representatives of dissolved organic matter were investigated by isothermal and kinetic adsorption tests as well as by different model-fitting methods. The effects of different dry-wet alternation treatments on the adsorption of tannic acid and glucose by the three minerals were investigated by isothermal and kinetic adsorption tests and different model fitting methods. The results showed that alternating dry-wet treatment could change the three minerals' specific surface area and average pore diameter to different degrees. Still, the spacing of the crystal layers did not change significantly. The dry-wet alternation did not alter the adsorption process and tannic acid and glucose adsorption mode. Still, it affected the equilibrium adsorption amount to different degrees, which was illite>hematite>kaolin, and the intensity of the effect was mainly affected by the decrease of the specific surface area of the minerals, which was not related to the change of the average pore diameter and the spacing of the crystal layers.","PeriodicalId":508651,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":"20 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139846573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}