Journal of the Atmospheric Sciences最新文献

筛选
英文 中文
Responses of simulated Arctic mixed-phase clouds to parameterized ice particle shape 模拟北极混合相云对参数化冰颗粒形状的响应
Journal of the Atmospheric Sciences Pub Date : 2023-11-20 DOI: 10.1175/jas-d-23-0015.1
Chia Rui Ong, Makoto Koike, T. Hashino, Hiroaki Miura
{"title":"Responses of simulated Arctic mixed-phase clouds to parameterized ice particle shape","authors":"Chia Rui Ong, Makoto Koike, T. Hashino, Hiroaki Miura","doi":"10.1175/jas-d-23-0015.1","DOIUrl":"https://doi.org/10.1175/jas-d-23-0015.1","url":null,"abstract":"In simulations of Arctic mixed-phase clouds, cloud persistence and the liquid water path (LWP) are sensitive to ice particle number concentrations. Here, we explore sensitivities of cloud microphysical properties to the dominant ice particle shape (dendrites, plates, columns, or spheres) using the SCALE-AMPS large-eddy simulation model. AMPS is a bin microphysics scheme that predicts particle shapes based on the Inherent Growth Ratio (IGR) of spheroids, which determines vapor depositional growth rates along the a- and c-axes, and the rimed and aggregate mass fractions. We examine the impacts of various IGR values on simulations of clouds observed during the M-PACE and SHEBA experiments. Under M-PACE (SHEBA) conditions, LWP varies between 49 (1.1) and 230 (6.7) g m−2, and the ice water path (IWP) varies between 3 (0.03) and 40 (0.12) g m−2, depending on the ice shape. The lowest LWP and the highest IWP are obtained when columnar particles dominate because their low terminal velocities and large capacitance and collisional area result in large vapor deposition and riming rates, whereas the highest LWP and lowest IWP are obtained when spherical particles dominate because their vapor deposition and riming rates are low. Because ice particle shape significantly influences simulated Arctic mixed-phase clouds, reliable simulations require accurately estimated IGR values under various atmospheric conditions. Finally, comparisons between the simulation results and observations show that the size distribution larger than 2000 μm is better reproduced when the increase in rimed mass that causes ice particles to become spherical is suppressed.","PeriodicalId":508177,"journal":{"name":"Journal of the Atmospheric Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139255790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信