Annals of Applied Statistics最新文献

筛选
英文 中文
BAYESIAN NESTED LATENT CLASS MODELS FOR CAUSE-OF-DEATH ASSIGNMENT USING VERBAL AUTOPSIES ACROSS MULTIPLE DOMAINS. 利用多领域口头尸检的贝叶斯嵌套潜类模型确定死因。
IF 1.3 4区 数学
Annals of Applied Statistics Pub Date : 2024-06-01 Epub Date: 2024-04-05 DOI: 10.1214/23-aoas1826
Zehang Richard Li, Zhenke Wu, Irena Chen, Samuel J Clark
{"title":"BAYESIAN NESTED LATENT CLASS MODELS FOR CAUSE-OF-DEATH ASSIGNMENT USING VERBAL AUTOPSIES ACROSS MULTIPLE DOMAINS.","authors":"Zehang Richard Li, Zhenke Wu, Irena Chen, Samuel J Clark","doi":"10.1214/23-aoas1826","DOIUrl":"10.1214/23-aoas1826","url":null,"abstract":"<p><p>Understanding cause-specific mortality rates is crucial for monitoring population health and designing public health interventions. Worldwide, two-thirds of deaths do not have a cause assigned. Verbal autopsy (VA) is a well-established tool to collect information describing deaths outside of hospitals by conducting surveys to caregivers of a deceased person. It is routinely implemented in many low- and middle-income countries. Statistical algorithms to assign cause of death using VAs are typically vulnerable to the distribution shift between the data used to train the model and the target population. This presents a major challenge for analyzing VAs, as labeled data are usually unavailable in the target population. This article proposes a latent class model framework for VA data (LCVA) that jointly models VAs collected over multiple heterogeneous domains, assigns causes of death for out-of-domain observations and estimates cause-specific mortality fractions for a new domain. We introduce a parsimonious representation of the joint distribution of the collected symptoms using nested latent class models and develop a computationally efficient algorithm for posterior inference. We demonstrate that LCVA outperforms existing methods in predictive performance and scalability. Supplementary Material and reproducible analysis codes are available online. The R package LCVA implementing the method is available on GitHub (https://github.com/richardli/LCVA).</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"18 2","pages":"1137-1159"},"PeriodicalIF":1.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484295/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TENSOR QUANTILE REGRESSION WITH LOW-RANK TENSOR TRAIN ESTIMATION. 张量量子回归与低等级张量列车估计。
IF 1.3 4区 数学
Annals of Applied Statistics Pub Date : 2024-06-01 Epub Date: 2024-04-05 DOI: 10.1214/23-aoas1835
Zihuan Liu, Cheuk Yin Lee, Heping Zhang
{"title":"TENSOR QUANTILE REGRESSION WITH LOW-RANK TENSOR TRAIN ESTIMATION.","authors":"Zihuan Liu, Cheuk Yin Lee, Heping Zhang","doi":"10.1214/23-aoas1835","DOIUrl":"10.1214/23-aoas1835","url":null,"abstract":"<p><p>Neuroimaging studies often involve predicting a scalar outcome from an array of images collectively called tensor. The use of magnetic resonance imaging (MRI) provides a unique opportunity to investigate the structures of the brain. To learn the association between MRI images and human intelligence, we formulate a scalar-on-image quantile regression framework. However, the high dimensionality of the tensor makes estimating the coefficients for all elements computationally challenging. To address this, we propose a low-rank coefficient array estimation algorithm based on tensor train (TT) decomposition which we demonstrate can effectively reduce the dimensionality of the coefficient tensor to a feasible level while ensuring adequacy to the data. Our method is more stable and efficient compared to the commonly used, Canonic Polyadic rank approximation-based method. We also propose a generalized Lasso penalty on the coefficient tensor to take advantage of the spatial structure of the tensor, further reduce the dimensionality of the coefficient tensor, and improve the interpretability of the model. The consistency and asymptotic normality of the TT estimator are established under some mild conditions on the covariates and random errors in quantile regression models. The rate of convergence is obtained with regularization under the total variation penalty. Extensive numerical studies, including both synthetic and real MRI imaging data, are conducted to examine the empirical performance of the proposed method and its competitors.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"18 2","pages":"1294-1318"},"PeriodicalIF":1.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11046526/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140865777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MASH: MEDIATION ANALYSIS OF SURVIVAL OUTCOME AND HIGH-DIMENSIONAL OMICS MEDIATORS WITH APPLICATION TO COMPLEX DISEASES. mash:生存结果和高维 omics 中介因子的中介分析,适用于复杂疾病。
IF 1.3 4区 数学
Annals of Applied Statistics Pub Date : 2024-06-01 Epub Date: 2024-04-05 DOI: 10.1214/23-aoas1838
Sunyi Chi, Christopher R Flowers, Ziyi Li, Xuelin Huang, Peng Wei
{"title":"MASH: MEDIATION ANALYSIS OF SURVIVAL OUTCOME AND HIGH-DIMENSIONAL OMICS MEDIATORS WITH APPLICATION TO COMPLEX DISEASES.","authors":"Sunyi Chi, Christopher R Flowers, Ziyi Li, Xuelin Huang, Peng Wei","doi":"10.1214/23-aoas1838","DOIUrl":"10.1214/23-aoas1838","url":null,"abstract":"<p><p>Environmental exposures such as cigarette smoking influence health outcomes through intermediate molecular phenotypes, such as the methylome, transcriptome, and metabolome. Mediation analysis is a useful tool for investigating the role of potentially high-dimensional intermediate phenotypes in the relationship between environmental exposures and health outcomes. However, little work has been done on mediation analysis when the mediators are high-dimensional and the outcome is a survival endpoint, and none of it has provided a robust measure of total mediation effect. To this end, we propose an estimation procedure for Mediation Analysis of Survival outcome and High-dimensional omics mediators (MASH) based on sure independence screening for putative mediator variable selection and a second-moment-based measure of total mediation effect for survival data analogous to the <math> <mrow><msup><mi>R</mi> <mn>2</mn></msup> </mrow> </math> measure in a linear model. Extensive simulations showed good performance of MASH in estimating the total mediation effect and identifying true mediators. By applying MASH to the metabolomics data of 1919 subjects in the Framingham Heart Study, we identified five metabolites as mediators of the effect of cigarette smoking on coronary heart disease risk (total mediation effect, 51.1%) and two metabolites as mediators between smoking and risk of cancer (total mediation effect, 50.7%). Application of MASH to a diffuse large B-cell lymphoma genomics data set identified copy-number variations for eight genes as mediators between the baseline International Prognostic Index score and overall survival.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"18 2","pages":"1360-1377"},"PeriodicalIF":1.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11426188/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A BAYESIAN HIERARCHICAL SMALL AREA POPULATION MODEL ACCOUNTING FOR DATA SOURCE SPECIFIC METHODOLOGIES FROM AMERICAN COMMUNITY SURVEY, POPULATION ESTIMATES PROGRAM, AND DECENNIAL CENSUS DATA. 根据美国社区调查、人口估计计划和十年一次的人口普查数据,建立一个考虑到数据源特定方法的贝叶斯分层小地区人口模型。
IF 1.3 4区 数学
Annals of Applied Statistics Pub Date : 2024-06-01 Epub Date: 2024-04-05 DOI: 10.1214/23-aoas1849
Emily N Peterson, Rachel C Nethery, Tullia Padellini, Jarvis T Chen, Brent A Coull, Frédéric B Piel, Jon Wakefield, Marta Blangiardo, Lance A Waller
{"title":"A BAYESIAN HIERARCHICAL SMALL AREA POPULATION MODEL ACCOUNTING FOR DATA SOURCE SPECIFIC METHODOLOGIES FROM AMERICAN COMMUNITY SURVEY, POPULATION ESTIMATES PROGRAM, AND DECENNIAL CENSUS DATA.","authors":"Emily N Peterson, Rachel C Nethery, Tullia Padellini, Jarvis T Chen, Brent A Coull, Frédéric B Piel, Jon Wakefield, Marta Blangiardo, Lance A Waller","doi":"10.1214/23-aoas1849","DOIUrl":"https://doi.org/10.1214/23-aoas1849","url":null,"abstract":"<p><p>Small area population counts are necessary for many epidemiological studies, yet their quality and accuracy are often not assessed. In the United States, small area population counts are published by the United States Census Bureau (USCB) in the form of the decennial census counts, intercensal population projections (PEP), and American Community Survey (ACS) estimates. Although there are significant relationships between these three data sources, there are important contrasts in data collection, data availability, and processing methodologies such that each set of reported population counts may be subject to different sources and magnitudes of error. Additionally, these data sources do not report identical small area population counts due to post-survey adjustments specific to each data source. Consequently, in public health studies, small area disease/mortality rates may differ depending on which data source is used for denominator data. To accurately estimate annual small area population counts <i>and their</i> associated uncertainties, we present a Bayesian population (BPop) model, which fuses information from all three USCB sources, accounting for data source specific methodologies and associated errors. We produce comprehensive small area race-stratified estimates of the true population, and associated uncertainties, given the observed trends in all three USCB population estimates. The main features of our framework are: (1) a single model integrating multiple data sources, (2) accounting for data source specific data generating mechanisms and specifically accounting for data source specific errors, and (3) prediction of population counts for years without USCB reported data. We focus our study on the Black and White only populations for 159 counties of Georgia and produce estimates for years 2006-2023. We compare BPop population estimates to decennial census counts, PEP annual counts, and ACS multi-year estimates. Additionally, we illustrate and explain the different types of data source specific errors. Lastly, we compare model performance using simulations and validation exercises. Our Bayesian population model can be extended to other applications at smaller spatial granularity and for demographic subpopulations defined further by race, age, and sex, and/or for other geographical regions.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"18 2","pages":"1565-1595"},"PeriodicalIF":1.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423836/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selecting Invalid Instruments to Improve Mendelian Randomization with Two-Sample Summary Data. 选择无效工具,利用双样本汇总数据改进孟德尔随机化。
IF 1.3 4区 数学
Annals of Applied Statistics Pub Date : 2024-04-05 eCollection Date: 2024-06-01 DOI: 10.1214/23-AOAS1856
Ashish Patel, Francis J DiTraglia, Verena Zuber, Stephen Burgess
{"title":"Selecting Invalid Instruments to Improve Mendelian Randomization with Two-Sample Summary Data.","authors":"Ashish Patel, Francis J DiTraglia, Verena Zuber, Stephen Burgess","doi":"10.1214/23-AOAS1856","DOIUrl":"10.1214/23-AOAS1856","url":null,"abstract":"<p><p>Mendelian randomization (MR) is a widely-used method to estimate the causal relationship between a risk factor and disease. A fundamental part of any MR analysis is to choose appropriate genetic variants as instrumental variables. Genome-wide association studies often reveal that hundreds of genetic variants may be robustly associated with a risk factor, but in some situations investigators may have greater confidence in the instrument validity of only a smaller subset of variants. Nevertheless, the use of additional instruments may be optimal from the perspective of mean squared error even if they are slightly invalid; a small bias in estimation may be a price worth paying for a larger reduction in variance. For this purpose, we consider a method for \"focused\" instrument selection whereby genetic variants are selected to minimise the estimated asymptotic mean squared error of causal effect estimates. In a setting of many weak and locally invalid instruments, we propose a novel strategy to construct confidence intervals for post-selection focused estimators that guards against the worst case loss in asymptotic coverage. In empirical applications to: (i) validate lipid drug targets; and (ii) investigate vitamin D effects on a wide range of outcomes, our findings suggest that the optimal selection of instruments does not involve only a small number of biologically-justified instruments, but also many potentially invalid instruments.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"18 2","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7615940/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140913351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A BAYESIAN MACHINE LEARNING APPROACH FOR ESTIMATING HETEROGENEOUS SURVIVOR CAUSAL EFFECTS: APPLICATIONS TO A CRITICAL CARE TRIAL. 估计异质幸存者因果效应的贝叶斯机器学习方法:应用于重症监护试验。
IF 1.8 4区 数学
Annals of Applied Statistics Pub Date : 2024-03-01 Epub Date: 2024-01-31 DOI: 10.1214/23-aoas1792
Xinyuan Chen, Michael O Harhay, Guangyu Tong, Fan Li
{"title":"A BAYESIAN MACHINE LEARNING APPROACH FOR ESTIMATING HETEROGENEOUS SURVIVOR CAUSAL EFFECTS: APPLICATIONS TO A CRITICAL CARE TRIAL.","authors":"Xinyuan Chen, Michael O Harhay, Guangyu Tong, Fan Li","doi":"10.1214/23-aoas1792","DOIUrl":"10.1214/23-aoas1792","url":null,"abstract":"<p><p>Assessing heterogeneity in the effects of treatments has become increasingly popular in the field of causal inference and carries important implications for clinical decision-making. While extensive literature exists for studying treatment effect heterogeneity when outcomes are fully observed, there has been limited development in tools for estimating heterogeneous causal effects when patient-centered outcomes are truncated by a terminal event, such as death. Due to mortality occurring during study follow-up, the outcomes of interest are unobservable, undefined, or not fully observed for many participants in which case principal stratification is an appealing framework to draw valid causal conclusions. Motivated by the Acute Respiratory Distress Syndrome Network (ARDSNetwork) ARDS respiratory management (ARMA) trial, we developed a flexible Bayesian machine learning approach to estimate the average causal effect and heterogeneous causal effects among the always-survivors stratum when clinical outcomes are subject to truncation. We adopted Bayesian additive regression trees (BART) to flexibly specify separate mean models for the potential outcomes and latent stratum membership. In the analysis of the ARMA trial, we found that the low tidal volume treatment had an overall benefit for participants sustaining acute lung injuries on the outcome of time to returning home but substantial heterogeneity in treatment effects among the always-survivors, driven most strongly by biologic sex and the alveolar-arterial oxygen gradient at baseline (a physiologic measure of lung function and degree of hypoxemia). These findings illustrate how the proposed methodology could guide the prognostic enrichment of future trials in the field.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"18 1","pages":"350-374"},"PeriodicalIF":1.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10919396/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140061169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A SIMPLE AND FLEXIBLE TEST OF SAMPLE EXCHANGEABILITY WITH APPLICATIONS TO STATISTICAL GENOMICS. 简单灵活的样本可交换性测试,应用于统计基因组学。
IF 1.8 4区 数学
Annals of Applied Statistics Pub Date : 2024-03-01 Epub Date: 2024-01-31 DOI: 10.1214/23-aoas1817
Alan J Aw, Jeffrey P Spence, Yun S Song
{"title":"A SIMPLE AND FLEXIBLE TEST OF SAMPLE EXCHANGEABILITY WITH APPLICATIONS TO STATISTICAL GENOMICS.","authors":"Alan J Aw, Jeffrey P Spence, Yun S Song","doi":"10.1214/23-aoas1817","DOIUrl":"10.1214/23-aoas1817","url":null,"abstract":"<p><p>In scientific studies involving analyses of multivariate data, basic but important questions often arise for the researcher: Is the sample exchangeable, meaning that the joint distribution of the sample is invariant to the ordering of the units? Are the features independent of one another, or perhaps the features can be grouped so that the groups are mutually independent? In statistical genomics, these considerations are fundamental to downstream tasks such as demographic inference and the construction of polygenic risk scores. We propose a non-parametric approach, which we call the V test, to address these two questions, namely, a test of sample exchangeability given dependency structure of features, and a test of feature independence given sample exchangeability. Our test is conceptually simple, yet fast and flexible. It controls the Type I error across realistic scenarios, and handles data of arbitrary dimensions by leveraging large-sample asymptotics. Through extensive simulations and a comparison against unsupervised tests of stratification based on random matrix theory, we find that our test compares favorably in various scenarios of interest. We apply the test to data from the 1000 Genomes Project, demonstrating how it can be employed to assess exchangeability of the genetic sample, or find optimal linkage disequilibrium (LD) splits for downstream analysis. For exchangeability assessment, we find that removing rare variants can substantially increase the <math><mi>p</mi></math>-value of the test statistic. For optimal LD splitting, the V test reports different optimal splits than previous approaches not relying on hypothesis testing. Software for our methods is available in R (CRAN: flintyR) and Python (PyPI: flintyPy).</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"18 1","pages":"858-881"},"PeriodicalIF":1.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11115382/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141089297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
USING SIMULTANEOUS REGRESSION CALIBRATION TO STUDY THE EFFECT OF MULTIPLE ERROR-PRONE EXPOSURES ON DISEASE RISK UTILIZING BIOMARKERS DEVELOPED FROM A CONTROLLED FEEDING STUDY. 使用同步回归校准法,利用受控喂养研究中开发的生物标记物,研究多种易出错暴露对疾病风险的影响。
IF 1.3 4区 数学
Annals of Applied Statistics Pub Date : 2024-03-01 Epub Date: 2024-01-31 DOI: 10.1214/23-aoas1782
Yiwen Zhang, Ran Dai, Ying Huang, Ross Prentice, Cheng Zheng
{"title":"USING SIMULTANEOUS REGRESSION CALIBRATION TO STUDY THE EFFECT OF MULTIPLE ERROR-PRONE EXPOSURES ON DISEASE RISK UTILIZING BIOMARKERS DEVELOPED FROM A CONTROLLED FEEDING STUDY.","authors":"Yiwen Zhang, Ran Dai, Ying Huang, Ross Prentice, Cheng Zheng","doi":"10.1214/23-aoas1782","DOIUrl":"10.1214/23-aoas1782","url":null,"abstract":"<p><p>Systematic measurement error in self-reported data creates important challenges in association studies between dietary intakes and chronic disease risks, especially when multiple dietary components are studied jointly. The joint regression calibration method has been developed for measurement error correction when objectively measured biomarkers are available for all dietary components of interest. Unfortunately, objectively measured biomarkers are only available for very few dietary components, which limits the application of the joint regression calibration method. Recently, for single dietary components, controlled feeding studies have been performed to develop new biomarkers for many more dietary components. However, it is unclear whether the biomarkers separately developed for single dietary components are valid for joint calibration. In this paper, we show that biomarkers developed for single dietary components cannot be used for joint regression calibration. We propose new methods to utilize controlled feeding studies to develop valid biomarkers for joint regression calibration to estimate the association between multiple dietary components simultaneously with the disease of interest. Asymptotic distribution theory for the proposed estimators is derived. Extensive simulations are performed to study the finite sample performance of the proposed estimators. We apply our methods to examine the joint effects of sodium and potassium intakes on cardiovascular disease incidence using the Women's Health Initiative cohort data. We identify positive associations between sodium intake and cardiovascular diseases as well as negative associations between potassium intake and cardiovascular disease.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"18 1","pages":"125-143"},"PeriodicalIF":1.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10836829/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139681864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LATENT SUBGROUP IDENTIFICATION IN IMAGE-ON-SCALAR REGRESSION. 图像标度回归中的潜在子群识别。
IF 1.8 4区 数学
Annals of Applied Statistics Pub Date : 2024-03-01 Epub Date: 2024-01-31 DOI: 10.1214/23-aoas1797
Zikai Lin, Yajuan Si, Jian Kang
{"title":"LATENT SUBGROUP IDENTIFICATION IN IMAGE-ON-SCALAR REGRESSION.","authors":"Zikai Lin, Yajuan Si, Jian Kang","doi":"10.1214/23-aoas1797","DOIUrl":"10.1214/23-aoas1797","url":null,"abstract":"<p><p>Image-on-scalar regression has been a popular approach to modeling the association between brain activities and scalar characteristics in neuroimaging research. The associations could be heterogeneous across individuals in the population, as indicated by recent large-scale neuroimaging studies, for example, the Adolescent Brain Cognitive Development (ABCD) Study. The ABCD data can inform our understanding of heterogeneous associations and how to leverage the heterogeneity and tailor interventions to increase the number of youths who benefit. It is of great interest to identify subgroups of individuals from the population such that: (1) within each subgroup the brain activities have homogeneous associations with the clinical measures; (2) across subgroups the associations are heterogeneous, and (3) the group allocation depends on individual characteristics. Existing image-on-scalar regression methods and clustering methods cannot directly achieve this goal. We propose a latent subgroup image-on-scalar regression model (LASIR) to analyze large-scale, multisite neuroimaging data with diverse sociode-mographics. LASIR introduces the latent subgroup for each individual and group-specific, spatially varying effects, with an efficient stochastic expectation maximization algorithm for inferences. We demonstrate that LASIR outperforms existing alternatives for subgroup identification of brain activation patterns with functional magnetic resonance imaging data via comprehensive simulations and applications to the ABCD study. We have released our reproducible codes for public use with the software package available on Github.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"18 1","pages":"468-486"},"PeriodicalIF":1.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11156244/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141285216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ANOPOW FOR REPLICATED NONSTATIONARY TIME SERIES IN EXPERIMENTS. 用于实验中复制的非平稳时间序列的 anopow。
IF 1.8 4区 数学
Annals of Applied Statistics Pub Date : 2024-03-01 Epub Date: 2024-01-31 DOI: 10.1214/23-aoas1791
Zeda Li, Yu Ryan Yue, Scott A Bruce
{"title":"ANOPOW FOR REPLICATED NONSTATIONARY TIME SERIES IN EXPERIMENTS.","authors":"Zeda Li, Yu Ryan Yue, Scott A Bruce","doi":"10.1214/23-aoas1791","DOIUrl":"10.1214/23-aoas1791","url":null,"abstract":"<p><p>We propose a novel analysis of power (ANOPOW) model for analyzing replicated nonstationary time series commonly encountered in experimental studies. Based on a locally stationary ANOPOW Cramér spectral representation, the proposed model can be used to compare the second-order time-varying frequency patterns among different groups of time series and to estimate group effects as functions of both time and frequency. Formulated in a Bayesian framework, independent two-dimensional second-order random walk (RW2D) priors are assumed on each of the time-varying functional effects for flexible and adaptive smoothing. A piecewise stationary approximation of the nonstationary time series is used to obtain localized estimates of time-varying spectra. Posterior distributions of the time-varying functional group effects are then obtained via integrated nested Laplace approximations (INLA) at a low computational cost. The large-sample distribution of local periodograms can be appropriately utilized to improve estimation accuracy since INLA allows modeling of data with various types of distributions. The usefulness of the proposed model is illustrated through two real data applications: analyses of seismic signals and pupil diameter time series in children with attention deficit hyperactivity disorder. Simulation studies, Supplementary Materials (Li, Yue and Bruce, 2023a), and R code (Li, Yue and Bruce, 2023b) for this article are also available.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"18 1","pages":"328-349"},"PeriodicalIF":1.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10906746/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140023131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信