{"title":"LoCoNOMA: A grant-free resource allocation for massive MTC","authors":"Ibtissem Oueslati , Oussama Habachi , Jean-Pierre Cances , Vahid Meghdadi","doi":"10.1016/j.comnet.2024.110859","DOIUrl":"10.1016/j.comnet.2024.110859","url":null,"abstract":"<div><div>Massive machine-type communications (mMTC) represent a significant challenge in the fifth generation of wireless networks (5G) and become increasingly critical in the sixth generation (6G) due to the limited frequency spectrum. Addressing the demands of mMTC requires efficient resource sharing among multiple users. Integrating Grant-Free (GF) access with Non-Orthogonal Multiple Access (NOMA) is a promising strategy to improve spectral efficiency. However, it may cause additional interference and complexity at the gNodeB (gNB) side. To mitigate these issues, we propose a novel, low-complexity GF-NOMA framework for joint power and channel allocation, where devices autonomously select their sub-carriers and power levels in a fully distributed manner. Besides, the gNB’s role is limited to sending a global feedback for device coordination. The proposed technique has been validated analytically and through simulation, demonstrating superior performance compared to existing approaches, in particular for the massive access scenario.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"255 ","pages":"Article 110859"},"PeriodicalIF":4.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CLLS: Efficient certificateless lattice-based signature in VANETs","authors":"Sheng-wei Xu , Shu-han Yu , Zi-Yan Yue , Yi-Long Liu","doi":"10.1016/j.comnet.2024.110858","DOIUrl":"10.1016/j.comnet.2024.110858","url":null,"abstract":"<div><div>The rapid development of Vehicular Ad-hoc Network (VANETs) has improved road safety and traffic management, and brought great convenience to intelligent transportation system (ITS). However, the transmission of data over open channels caused many security issues. Certificateless cryptography solves the certificate management and key escrow problems, which makes it the primary method for message authentication in VANETs. However, with the emergence of quantum computing, traditional cryptography faces a significant challenge. Lattice-based cryptography are regarded as effective post-quantum ciphers. Nevertheless, nearly all existing lattice-based certificateless signature schemes rely on Gaussian sampling or trapdoor techniques, resulting in computational inefficiencies and large key and signature sizes that are impractical for VANETs. To address these issues, we proposed the first efficient algebraic lattice-based certificateless signature scheme in VANETs based on the Dilithium signature algorithm. The security of our certificateless lattice-based signature(CLLS) scheme is based on the MSIS and MLWE hardness assumption, which makes the scheme resistant to quantum attacks and easy to implement. Our scheme did not use Gaussian sampling or trapdoor techniques, which improve the computational and storage efficiency. As a result, the public key of our scheme is 1X smaller than the previous scheme and the size of signature is 2X smaller than the previous efficient algebraic lattice scheme. In addition, compared to the most efficient existing CLLS scheme, the signing and verification computation cost of our scheme are reduced by 20% and 55% respectively and our proposed CLLS scheme has low power consumption. Furthermore, the security of our scheme achieves strong unforgeability against chosen-message attacks(SUF-CMA) in the random oracle model(ROM), which surpasses that of existing lattice-based certificateless signature schemes.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"255 ","pages":"Article 110858"},"PeriodicalIF":4.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Computer NetworksPub Date : 2024-10-16DOI: 10.1016/j.comnet.2024.110860
Yubing Bao , Xin Du , Zhihui Lu , Jirui Yang , Shih-Chia Huang , Jianfeng Feng , Qibao Zheng
{"title":"Mitigating critical nodes in brain simulations via edge removal","authors":"Yubing Bao , Xin Du , Zhihui Lu , Jirui Yang , Shih-Chia Huang , Jianfeng Feng , Qibao Zheng","doi":"10.1016/j.comnet.2024.110860","DOIUrl":"10.1016/j.comnet.2024.110860","url":null,"abstract":"<div><div>Brain simulation holds promise for advancing our comprehension of brain mechanisms, brain-inspired intelligence, and addressing brain-related disorders. However, during brain simulations on high-performance computing platforms, the sparse and irregular communication patterns within the brain can lead to the emergence of critical nodes in the simulated network, which in turn become bottlenecks for inter-process communication. Therefore, effective moderation of critical nodes is crucial for the smooth conducting of brain simulation. In this paper, we formulate the routing communication problem commonly encountered in brain simulation networks running on supercomputers. To address this issue, we firstly propose the Node-Edge Centrality Addressing Algorithm (NCA) for identifying critical nodes and edges, based on an enhanced closeness centrality metric. Furthermore, drawing on the homology of spikes observed in biological brains, we develop the Edge Removal Transit Algorithm (ERT) to reorganize sparse and unbalanced inter-process communication in brain simulation, thereby diminishing the information centrality of critical nodes. Through extensive simulation experiments, we evaluate the performance of the proposed communication scheme and find that the algorithm accurately identifies critical nodes with a high accuracy. Our simulation experiments on 1600 GPU cards demonstrate that our approach can reduce communication latency by up to 25.4%, significantly shortening simulation time in large-scale brain simulations.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"255 ","pages":"Article 110860"},"PeriodicalIF":4.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Computer NetworksPub Date : 2024-10-15DOI: 10.1016/j.comnet.2024.110855
Philipp Meyer, Timo Häckel, Sandra Reider, Franz Korf, Thomas C. Schmidt
{"title":"Network anomaly detection in cars: A case for time-sensitive stream filtering and policing","authors":"Philipp Meyer, Timo Häckel, Sandra Reider, Franz Korf, Thomas C. Schmidt","doi":"10.1016/j.comnet.2024.110855","DOIUrl":"10.1016/j.comnet.2024.110855","url":null,"abstract":"<div><div>Connected vehicles are threatened by cyber-attacks as in-vehicle networks technologically approach (mobile) LANs with several wireless interconnects to the outside world. Malware that infiltrates a car today faces potential victims of constrained, barely shielded Electronic Control Units (ECUs). Many ECUs perform critical driving functions, which stresses the need for hardening security and resilience of in-vehicle networks in a multifaceted way. Future vehicles will comprise Ethernet backbones that differentiate services via Time-Sensitive Networking (TSN). The well-known vehicular control flows will follow predefined schedules and TSN traffic classifications. In this paper, we exploit this traffic classification to build a network anomaly detection system. We show how filters and policies of TSN can identify misbehaving traffic and thereby serve as distributed guards on the data link layer. On this lowest possible layer, our approach derives a highly efficient network protection directly from TSN. We classify link layer anomalies and micro-benchmark the detection accuracy in each class. Based on a topology derived from a real-world car and its traffic definitions we evaluate the detection system in realistic macro-benchmarks based on recorded attack traces. Our results show that the detection accuracy depends on how exact the specifications of in-vehicle communication are configured. Most notably for a fully specified communication matrix, our anomaly detection remains free of false-positive alarms, which is a significant benefit for implementing automated countermeasures in future vehicles.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"255 ","pages":"Article 110855"},"PeriodicalIF":4.4,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adaptive learning-based hybrid recommender system for deception in Internet of Thing","authors":"Volviane Saphir Mfogo , Alain Zemkoho , Laurent Njilla , Marcellin Nkenlifack , Charles Kamhoua","doi":"10.1016/j.comnet.2024.110853","DOIUrl":"10.1016/j.comnet.2024.110853","url":null,"abstract":"<div><div>In the rapidly evolving Internet of Things (IoT) security domain, device vulnerabilities pose significant risks, frequently exploited by cyberattackers. Traditional reactive security measures like patching often fall short against advanced threats. This paper introduces a proactive deception system enhanced by an innovative Adaptive Learning-based Hybrid Recommender System (AL-HRS), utilizing the vulnerability and attack repository for IoT (VARIoT) database. This advanced system identifies existing vulnerabilities and dynamically recommends additional deceptive vulnerabilities based on real-time analysis of attacker behavior and historical exploit data. These recommended vulnerabilities mislead attackers into engaging with controlled environments such as honeypots, effectively neutralizing potential threats. The AL-HRS combines the predictive strengths of content-based filtering (CBF) and collaborative filtering (CF) with an adaptive learning mechanism that adjusts recommendations based on ongoing attacker interactions, ensuring the system’s efficacy amidst changing attack patterns. Our approach innovatively combines these methodologies to provide a continuously evolving security strategy, significantly enhancing the deception capability of IoT systems. Initial evaluations demonstrate a potential reduction in device compromise, highlighting the effectiveness and strategic relevance of this adaptive deception framework in IoT cybersecurity.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"255 ","pages":"Article 110853"},"PeriodicalIF":4.4,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Computer NetworksPub Date : 2024-10-11DOI: 10.1016/j.comnet.2024.110854
Claudio Casetti , Carla Fabiana Chiasserini , Falko Dressler , Agon Memedi , Diego Gasco , Elad Michael Schiller
{"title":"AI/ML-based services and applications for 6G-connected and autonomous vehicles","authors":"Claudio Casetti , Carla Fabiana Chiasserini , Falko Dressler , Agon Memedi , Diego Gasco , Elad Michael Schiller","doi":"10.1016/j.comnet.2024.110854","DOIUrl":"10.1016/j.comnet.2024.110854","url":null,"abstract":"<div><div>AI and ML emerge as pivotal in overcoming the limitations of traditional network optimization techniques and conventional control loop designs, particularly in addressing the challenges of high mobility and dynamic vehicular communications inherent in the domain of connected and autonomous vehicles (CAVs). The survey explores the contributions of novel AI/ML techniques in the field of CAVs, also in the context of innovative deployment of multilevel cloud systems and edge computing as strategic solutions to meet the requirements of high traffic density and mobility in CAV networks. These technologies are instrumental in curbing latency and alleviating network congestion by facilitating proximal computing resources to CAVs, thereby enhancing operational efficiency also when AI-based applications require computationally-heavy tasks. A significant focus of this survey is the anticipated impact of 6G technology, which promises to revolutionize the mobility industry. 6G is envisaged to foster intelligent, cooperative, and sustainable mobility environments, heralding a new era in vehicular communication and network management. This survey comprehensively reviews the latest advancements and potential applications of AI/ML for CAVs, including sensory perception enhancement, real-time traffic management, and personalized navigation.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"255 ","pages":"Article 110854"},"PeriodicalIF":4.4,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Computer NetworksPub Date : 2024-10-10DOI: 10.1016/j.comnet.2024.110849
Dev Gurung, Shiva Raj Pokhrel, Gang Li
{"title":"Performance analysis and evaluation of postquantum secure blockchained federated learning","authors":"Dev Gurung, Shiva Raj Pokhrel, Gang Li","doi":"10.1016/j.comnet.2024.110849","DOIUrl":"10.1016/j.comnet.2024.110849","url":null,"abstract":"<div><div>As the field of quantum computing progresses, traditional cryptographic algorithms such as RSA and ECDSA are becoming increasingly vulnerable to quantum-based attacks, underscoring the need for robust post-quantum security in critical systems like Federated Learning (FL) and Blockchain. In light of this, we propose a novel hybrid approach for blockchain-based FL (BFL) that integrates a stateless signature scheme, such as Dilithium or Falcon, with a stateful hash-based scheme like XMSS. This combination leverages the complementary strengths of both schemes to provide enhanced security. To further optimize performance, we introduce a linear formula-based device role selection method that takes into account key factors such as computational power and stake accumulation. This selection process is reinforced by a verifiable random function (VRF), which strengthens the blockchain consensus mechanism. Our extensive experimental results demonstrate that this hybrid approach significantly enhances both the security and efficiency of BFL systems, establishing a robust framework for the integration of post-quantum cryptography as we transition into the quantum computing era.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"255 ","pages":"Article 110849"},"PeriodicalIF":4.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Secure collaborative EHR Sharing using multi-authority attribute-based proxy re-encryption in Web 3.0","authors":"Pengfei Duan , Hongmin Gao , Yushi Shen , Zhetao Guo , Zhaofeng Ma , Tian Tian , Yuqing Zhang","doi":"10.1016/j.comnet.2024.110851","DOIUrl":"10.1016/j.comnet.2024.110851","url":null,"abstract":"<div><div>Web 3.0 represents a transformative shift toward a decentralized, intelligent, and user-centric Internet. Existing electronic health record (EHR) sharing systems depend on centralized cloud servers for storage and management, with hospitals serving as primary custodians. This centralization often results in patients losing control and visibility over their EHR data, including who accesses it and how it is utilized, which contradicts the decentralized principles of Web 3.0. In this context, we propose a multi-authority attribute-based proxy re-encryption scheme that facilitates collaborative EHR sharing in Web 3.0. Our design allows the updating of ciphertext policies, thereby eliminating the need for frequent re-encryption of plaintext data amid varying cross-domain access policies. Furthermore, our scheme utilizes blockchain technology to create a decentralized and transparent environment that enables traceable cross-domain EHR sharing records. Additionally, we integrate hybrid encryption with decentralized data hosting platforms, significantly reducing the on-chain storage burden. The use of smart contracts automates the cross-domain EHR sharing and guarantees a fair distribution of benefits among all participants. Security analysis confirms that our scheme is secure against chosen plaintext attacks and resistant to collusion. Performance analysis and simulation experiments validate the efficiency and robustness of our scheme.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"255 ","pages":"Article 110851"},"PeriodicalIF":4.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Computer NetworksPub Date : 2024-10-09DOI: 10.1016/j.comnet.2024.110843
Danyang Zheng , Huanlai Xing , Li Feng , Xiaojun Cao
{"title":"Provably efficient security-aware service function tree composing and embedding in multi-vendor networks","authors":"Danyang Zheng , Huanlai Xing , Li Feng , Xiaojun Cao","doi":"10.1016/j.comnet.2024.110843","DOIUrl":"10.1016/j.comnet.2024.110843","url":null,"abstract":"<div><div>Multicast greatly benefits many emerging applications such as federated learning, metaverse, and data warehouse. Recently, due to frequent cyber-attacks, multicast services have tended to request rigorous security agreements, which likely differ among the destinations. To meet such agreements, one can employ security-aware service functions (SFs) to construct the security-aware SF tree (S-SFT) for multicast services. A security-aware SF can be provided by various vendors with diverse configurations and implementation costs. The multi-configured SFs and the various security agreements will add significant complexity to the deployment process of the security-aware multicast request. In this work, for the first time, we study how to effectively compose and embed an S-SFT over the network with multiple vendors. We formulate the problem of security-aware SFT composing and embedding. We develop a new technique called cost-security-centrality (CSC) based on the pigeonhole’ s principle and propose a heuristic algorithm called CSC-based S-SFT deployment (CSC-SD). Via thorough mathematical proofs, we show that CSC-SD is logarithm approximate. Extensive simulations show that CSC-SD significantly outperforms the benchmarks and reveal that more function sharing facilitates saving implementation cost, but more routing sharing does not indicate saving routing cost.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"254 ","pages":"Article 110843"},"PeriodicalIF":4.4,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142419304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Computer NetworksPub Date : 2024-10-09DOI: 10.1016/j.comnet.2024.110844
Petros Amanatidis , Dimitris Karampatzakis , Georgios Michailidis , Thomas Lagkas , George Iosifidis
{"title":"Adaptive reverse task offloading in edge computing for AI processes","authors":"Petros Amanatidis , Dimitris Karampatzakis , Georgios Michailidis , Thomas Lagkas , George Iosifidis","doi":"10.1016/j.comnet.2024.110844","DOIUrl":"10.1016/j.comnet.2024.110844","url":null,"abstract":"<div><div>Nowadays, we witness the proliferation of edge IoT devices, ranging from smart cameras to autonomous vehicles, with increasing computing capabilities, used to implement AI-based services in users’ proximity, right at the edge. As these services are often computationally demanding, the popular paradigm of offloading their tasks to nearby cloud servers has gained much traction and been studied extensively. In this work, we propose a new paradigm that departs from the above typical edge computing offloading idea. Namely, we argue that it is possible to leverage these end nodes to assist larger nodes (e.g., cloudlets) in executing AI tasks. Indeed, as more and more end nodes are deployed, they create an abundance of idle computing capacity, which, when aggregated and exploited in a systematic fashion, can be proved beneficial. We introduce the idea of reverse offloading and study a scenario where a powerful node splits an AI task into a group of subtasks and assigns them to a set of nearby edge IoT nodes. The goal of each node is to minimize the overall execution time, which is constrained by the slowest subtask, while adhering to predetermined energy consumption and AI performance constraints. This is a challenging MINLP (Mixed Integer Non-Linear Problem) optimization problem that we tackle with a novel approach through our newly introduced EAI-ARO (Edge AI-Adaptive Reverse Offloading) algorithm. Furthermore, a demonstration of the efficacy of our reverse offloading proposal using an edge computing testbed and a representative AI service is performed. The findings suggest that our method optimizes the system’s performance significantly when compared with a greedy and a baseline task offloading algorithm.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"255 ","pages":"Article 110844"},"PeriodicalIF":4.4,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}