Computer Systems Science and Engineering最新文献

筛选
英文 中文
Faster RCNN Target Detection Algorithm Integrating CBAM and FPN 结合CBAM和FPN的快速RCNN目标检测算法
IF 2.2 4区 计算机科学
Computer Systems Science and Engineering Pub Date : 2023-06-07 DOI: 10.3390/app13126913
Wenshun Sheng, Xiongfeng Yu, Jiayan Lin, Xin Chen
{"title":"Faster RCNN Target Detection Algorithm Integrating CBAM and FPN","authors":"Wenshun Sheng, Xiongfeng Yu, Jiayan Lin, Xin Chen","doi":"10.3390/app13126913","DOIUrl":"https://doi.org/10.3390/app13126913","url":null,"abstract":"In the process of image shooting, due to the influence of angle, distance, complex scenes, illumination intensity, and other factors, small targets and occluded targets will inevitably appear in the image. These targets have few effective pixels, few features, and no obvious features, which makes it difficult to extract their effective features and easily leads to false detection, missed detection, and repeated detection, thus affecting the performance of target detection models. To solve this problem, an improved faster region convolutional neural network (RCNN) algorithm integrating the convolutional block attention module (CBAM) and feature pyramid network (FPN) (CF-RCNN) is proposed to improve the detection and recognition accuracy of small-sized, occluded, or truncated objects in complex scenes. Firstly, it incorporates the CBAM attention mechanism in the feature extraction network in combination with the information filtered by spatial and channel attention modules, focusing on local efficient information of the feature image, which improves the detection ability in the face of obscured or truncated objects. Secondly, it introduces the FPN feature pyramid structure, and links high-level and bottom-level feature data to obtain high-resolution and strong semantic data to enhance the detection effect for small-sized objects. Finally, it optimizes non-maximum suppression (NMS) to compensate for the shortcomings of conventional NMS that mistakenly eliminates overlapping detection frames. The experimental results show that the mean average precision (MAP) of target detection of the improved algorithm on PASCAL VOC2012 public datasets is improved to 76.2%, which is 13.9 percentage points higher than those of the commonly used Faster RCNN and other algorithms. It is better than the commonly used small-sample target detection algorithm.","PeriodicalId":50634,"journal":{"name":"Computer Systems Science and Engineering","volume":"68 1","pages":"1549-1569"},"PeriodicalIF":2.2,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89604886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
SNELM: SqueezeNet-Guided ELM for COVID-19 Recognition. SNELM:用于COVID-19识别的挤压引导ELM。
IF 2.2 4区 计算机科学
Computer Systems Science and Engineering Pub Date : 2023-01-20 DOI: 10.32604/csse.2023.034172
Yudong Zhang, Muhammad Attique Khan, Ziquan Zhu, Shuihua Wang
{"title":"SNELM: SqueezeNet-Guided ELM for COVID-19 Recognition.","authors":"Yudong Zhang,&nbsp;Muhammad Attique Khan,&nbsp;Ziquan Zhu,&nbsp;Shuihua Wang","doi":"10.32604/csse.2023.034172","DOIUrl":"https://doi.org/10.32604/csse.2023.034172","url":null,"abstract":"<p><p>(Aim) The COVID-19 has caused 6.26 million deaths and 522.06 million confirmed cases till 17/May/2022. Chest computed tomography is a precise way to help clinicians diagnose COVID-19 patients. (Method) Two datasets are chosen for this study. The multiple-way data augmentation, including speckle noise, random translation, scaling, salt-and-pepper noise, vertical shear, Gamma correction, rotation, Gaussian noise, and horizontal shear, is harnessed to increase the size of the training set. Then, the SqueezeNet (SN) with complex bypass is used to generate SN features. Finally, the extreme learning machine (ELM) is used to serve as the classifier due to its simplicity of usage, quick learning speed, and great generalization performances. The number of hidden neurons in ELM is set to 2000. Ten runs of 10-fold cross-validation are implemented to generate impartial results. (Result) For the 296-image dataset, our SNELM model attains a sensitivity of 96.35 ± 1.50%, a specificity of 96.08 ± 1.05%, a precision of 96.10 ± 1.00%, and an accuracy of 96.22 ± 0.94%. For the 640-image dataset, the SNELM attains a sensitivity of 96.00 ± 1.25%, a specificity of 96.28 ± 1.16%, a precision of 96.28 ± 1.13%, and an accuracy of 96.14 ± 0.96%. (Conclusion) The proposed SNELM model is successful in diagnosing COVID-19. The performances of our model are higher than seven state-of-the-art COVID-19 recognition models.</p>","PeriodicalId":50634,"journal":{"name":"Computer Systems Science and Engineering","volume":"46 1","pages":"13-26"},"PeriodicalIF":2.2,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614503/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9784682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
A Multi-Objective Genetic Algorithm Based Load Balancing Strategy for Health Monitoring Systems in Fog-Cloud 基于多目标遗传算法的雾云健康监测系统负载均衡策略
4区 计算机科学
Computer Systems Science and Engineering Pub Date : 2023-01-01 DOI: 10.32604/csse.2023.038545
Hayder Makki Shakir, Jaber Karimpour, Jafar Razmara
{"title":"A Multi-Objective Genetic Algorithm Based Load Balancing Strategy for Health Monitoring Systems in Fog-Cloud","authors":"Hayder Makki Shakir, Jaber Karimpour, Jafar Razmara","doi":"10.32604/csse.2023.038545","DOIUrl":"https://doi.org/10.32604/csse.2023.038545","url":null,"abstract":"","PeriodicalId":50634,"journal":{"name":"Computer Systems Science and Engineering","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135563761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ligand Based Virtual Screening of Molecular Compounds in Drug Discovery Using GCAN Fingerprint and Ensemble Machine Learning Algorithm 基于GCAN指纹和集成机器学习算法的药物发现中分子化合物配体虚拟筛选
4区 计算机科学
Computer Systems Science and Engineering Pub Date : 2023-01-01 DOI: 10.32604/csse.2023.033807
R. Ani, O. S. Deepa, B. R. Manju
{"title":"Ligand Based Virtual Screening of Molecular Compounds in Drug Discovery Using GCAN Fingerprint and Ensemble Machine Learning Algorithm","authors":"R. Ani, O. S. Deepa, B. R. Manju","doi":"10.32604/csse.2023.033807","DOIUrl":"https://doi.org/10.32604/csse.2023.033807","url":null,"abstract":"The drug development process takes a long time since it requires sorting through a large number of inactive compounds from a large collection of compounds chosen for study and choosing just the most pertinent compounds that can bind to a disease protein. The use of virtual screening in pharmaceutical research is growing in popularity. During the early phases of medication research and development, it is crucial. Chemical compound searches are now more narrowly targeted. Because the databases contain more and more ligands, this method needs to be quick and exact. Neural network fingerprints were created more effectively than the well-known Extended Connectivity Fingerprint (ECFP). Only the largest sub-graph is taken into consideration to learn the representation, despite the fact that the conventional graph network generates a better-encoded fingerprint. When using the average or maximum pooling layer, it also contains unrelated data. This article suggested the Graph Convolutional Attention Network (GCAN), a graph neural network with an attention mechanism, to address these problems. Additionally, it makes the nodes or sub-graphs that are used to create the molecular fingerprint more significant. The generated fingerprint is used to classify drugs using ensemble learning. As base classifiers, ensemble stacking is applied to Support Vector Machines (SVM), Random Forest, Nave Bayes, Decision Trees, AdaBoost, and Gradient Boosting. When compared to existing models, the proposed GCAN fingerprint with an ensemble model achieves relatively high accuracy, sensitivity, specificity, and area under the curve. Additionally, it is revealed that our ensemble learning with generated molecular fingerprint yields 91% accuracy, outperforming earlier approaches.","PeriodicalId":50634,"journal":{"name":"Computer Systems Science and Engineering","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135563771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance Improvement through Novel Adaptive Node and Container Aware Scheduler with Resource Availability Control in Hadoop YARN Hadoop YARN中基于资源可用性控制的自适应节点和容器感知调度器的性能改进
4区 计算机科学
Computer Systems Science and Engineering Pub Date : 2023-01-01 DOI: 10.32604/csse.2023.036320
J. S. Manjaly, T. Subbulakshmi
{"title":"Performance Improvement through Novel Adaptive Node and Container Aware Scheduler with Resource Availability Control in Hadoop YARN","authors":"J. S. Manjaly, T. Subbulakshmi","doi":"10.32604/csse.2023.036320","DOIUrl":"https://doi.org/10.32604/csse.2023.036320","url":null,"abstract":"The default scheduler of Apache Hadoop demonstrates operational inefficiencies when connecting external sources and processing transformation jobs. This paper has proposed a novel scheduler for enhancement of the performance of the Hadoop Yet Another Resource Negotiator (YARN) scheduler, called the Adaptive Node and Container Aware Scheduler (ANACRAC), that aligns cluster resources to the demands of the applications in the real world. The approach performs to leverage the user-provided configurations as a unique design to apportion nodes, or containers within the nodes, to application thresholds. Additionally, it provides the flexibility to the applications for selecting and choosing which node’s resources they want to manage and adds limits to prevent threshold breaches by adding additional jobs as needed. Node or container awareness can be utilized individually or in combination to increase efficiency. On top of this, the resource availability within the node and containers can also be investigated. This paper also focuses on the elasticity of the containers and self-adaptiveness depending on the job type. The results proved that 15%–20% performance improvement was achieved compared with the node and container awareness feature of the ANACRAC. It has been validated that this ANACRAC scheduler demonstrates a 70%–90% performance improvement compared with the default Fair scheduler. Experimental results also demonstrated the success of the enhancement and a performance improvement in the range of 60% to 200% when applications were connected with external interfaces and high workloads.","PeriodicalId":50634,"journal":{"name":"Computer Systems Science and Engineering","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135563782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast and Accurate Detection of Masked Faces Using CNNs and LBPs 基于cnn和lbp的被遮挡人脸快速准确检测
4区 计算机科学
Computer Systems Science and Engineering Pub Date : 2023-01-01 DOI: 10.32604/csse.2023.041011
Sarah M. Alhammad, Doaa Sami Khafaga, Aya Y. Hamed, Osama El-Koumy, Ehab R. Mohamed, Khalid M. Hosny
{"title":"Fast and Accurate Detection of Masked Faces Using CNNs and LBPs","authors":"Sarah M. Alhammad, Doaa Sami Khafaga, Aya Y. Hamed, Osama El-Koumy, Ehab R. Mohamed, Khalid M. Hosny","doi":"10.32604/csse.2023.041011","DOIUrl":"https://doi.org/10.32604/csse.2023.041011","url":null,"abstract":"Face mask detection has several applications, including real-time surveillance, biometrics, etc. Identifying face masks is also helpful for crowd control and ensuring people wear them publicly. With monitoring personnel, it is impossible to ensure that people wear face masks; automated systems are a much superior option for face mask detection and monitoring. This paper introduces a simple and efficient approach for masked face detection. The architecture of the proposed approach is very straightforward; it combines deep learning and local binary patterns to extract features and classify them as masked or unmasked. The proposed system requires hardware with minimal power consumption compared to state-of-the-art deep learning algorithms. Our proposed system maintains two steps. At first, this work extracted the local features of an image by using a local binary pattern descriptor, and then we used deep learning to extract global features. The proposed approach has achieved excellent accuracy and high performance. The performance of the proposed method was tested on three benchmark datasets: the real-world masked faces dataset (RMFD), the simulated masked faces dataset (SMFD), and labeled faces in the wild (LFW). Performance metrics for the proposed technique were measured in terms of accuracy, precision, recall, and F1-score. Results indicated the efficiency of the proposed technique, providing accuracies of 99.86%, 99.98%, and 100% for RMFD, SMFD, and LFW, respectively. Moreover, the proposed method outperformed state-of-the-art deep learning methods in the recent bibliography for the same problem under study and on the same evaluation datasets.","PeriodicalId":50634,"journal":{"name":"Computer Systems Science and Engineering","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135563956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning Noise-Assisted Robust Image Features for Fine-Grained Image Retrieval 学习噪声辅助鲁棒图像特征用于细粒度图像检索
IF 2.2 4区 计算机科学
Computer Systems Science and Engineering Pub Date : 2023-01-01 DOI: 10.32604/csse.2023.032047
Vidit Kumar, Hemant Petwal, Ajay Krishan Gairola, Pareshwar Prasad Barmola
{"title":"Learning Noise-Assisted Robust Image Features for Fine-Grained Image Retrieval","authors":"Vidit Kumar, Hemant Petwal, Ajay Krishan Gairola, Pareshwar Prasad Barmola","doi":"10.32604/csse.2023.032047","DOIUrl":"https://doi.org/10.32604/csse.2023.032047","url":null,"abstract":"","PeriodicalId":50634,"journal":{"name":"Computer Systems Science and Engineering","volume":"39 1","pages":"2711-2724"},"PeriodicalIF":2.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87480652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leveraging Retinal Fundus Images with Deep Learning for Diabetic Retinopathy Grading and Classification 基于深度学习的视网膜眼底图像用于糖尿病视网膜病变分级和分类
IF 2.2 4区 计算机科学
Computer Systems Science and Engineering Pub Date : 2023-01-01 DOI: 10.32604/csse.2023.036455
Mohammad Yamin, Sarah B. Basahel, Saleh Bajaba, Mona Abusurrah, E. Lydia
{"title":"Leveraging Retinal Fundus Images with Deep Learning for Diabetic Retinopathy Grading and Classification","authors":"Mohammad Yamin, Sarah B. Basahel, Saleh Bajaba, Mona Abusurrah, E. Lydia","doi":"10.32604/csse.2023.036455","DOIUrl":"https://doi.org/10.32604/csse.2023.036455","url":null,"abstract":"","PeriodicalId":50634,"journal":{"name":"Computer Systems Science and Engineering","volume":"120 1","pages":"1901-1916"},"PeriodicalIF":2.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89019370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reliable Failure Restoration with Bayesian Congestion Aware for Software Defined Networks 基于贝叶斯拥塞感知的软件定义网络可靠故障恢复
IF 2.2 4区 计算机科学
Computer Systems Science and Engineering Pub Date : 2023-01-01 DOI: 10.32604/csse.2023.034509
Babangida Isyaku, K. AbuBakar, W. Nagmeldin, Abdelzahir Abdelmaboud, Faisal Saeed, Fuad A. Ghaleb
{"title":"Reliable Failure Restoration with Bayesian Congestion Aware for Software Defined Networks","authors":"Babangida Isyaku, K. AbuBakar, W. Nagmeldin, Abdelzahir Abdelmaboud, Faisal Saeed, Fuad A. Ghaleb","doi":"10.32604/csse.2023.034509","DOIUrl":"https://doi.org/10.32604/csse.2023.034509","url":null,"abstract":"","PeriodicalId":50634,"journal":{"name":"Computer Systems Science and Engineering","volume":"5 1","pages":"3729-3748"},"PeriodicalIF":2.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90506370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Energy Efficient Unequal Fault Tolerance Clustering Approach 节能不等容错聚类方法
IF 2.2 4区 计算机科学
Computer Systems Science and Engineering Pub Date : 2023-01-01 DOI: 10.32604/csse.2022.021924
Sowjanya Ramisetty, Divya Anand, Kavita, Sahil Verma, Noor Zaman Jhanjhi, Mehedi Masud, M. Baz
{"title":"Energy Efficient Unequal Fault Tolerance Clustering Approach","authors":"Sowjanya Ramisetty, Divya Anand, Kavita, Sahil Verma, Noor Zaman Jhanjhi, Mehedi Masud, M. Baz","doi":"10.32604/csse.2022.021924","DOIUrl":"https://doi.org/10.32604/csse.2022.021924","url":null,"abstract":"","PeriodicalId":50634,"journal":{"name":"Computer Systems Science and Engineering","volume":"13 1","pages":"1971-1983"},"PeriodicalIF":2.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90652475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信