{"title":"Sensorless Induction Motor Drive Using Modified Integral Sliding Mode Control-Based MRAS","authors":"Hau Huu Vo","doi":"10.61416/ceai.v25i3.8563","DOIUrl":"https://doi.org/10.61416/ceai.v25i3.8563","url":null,"abstract":"A modified integral sliding mode control-based adaptation algorithm (MISMCA) is described to enhance performance of sensorless rotor flux model-reference-adaptive-system (RF-MRAS) induction motor drive (IMD). At low speed regions, performance of RF-MRAS is not guaranteed due to conventional PI-based adaptation algorithm (PIA) and parameter uncertainties, especially rotor time constant. In order to improve performance of RF-MRAS, the PIA is replaced by an algorithm based on integral sliding mode control (ISMC). In the ISMC design, the term that contains rotor time constant is considered as noise, and a reference model-based approximation is employed to adapt rotor time constant. Moreover, bipolar sigmoid function is utilized to reduce chattering-phenomenon. Simulations with sensorless RF-MRAS direct torque control IMD confirm the advantages of the MISMCA compared with the PIA in terms of maximum value and ITAE index of estimated speed error. DOI: 10.61416/ceai.v25i3.8563","PeriodicalId":50616,"journal":{"name":"Control Engineering and Applied Informatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134958360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of Stand-Alone Photovoltaic System Test-Bed using Neural Network based Solar PV Array Emulator","authors":"Ulaganathan M, Devaraj D, Muniraj R","doi":"10.61416/ceai.v25i3.8106","DOIUrl":"https://doi.org/10.61416/ceai.v25i3.8106","url":null,"abstract":"Research on solar power generation is gaining momentum in recent decade, which requires a costly and complex experimental setup. The Photo-Voltaic (PV) source emulator is a low cost and necessary equipment to evaluate the solar PV array performance, Maximum Power Point Tracking (MPPT) algorithm, power converters, and corresponding control algorithm. This paper proposes a novel Neural Network (NN)-based Solar Array Emulator (SAE) to emulate PV array dynamic characteristics under varying environmental conditions. The proposed SAE reference model has been developed using NN, which can replicate a PV array characteristics with a programmable DC power source’s support. A 640 W stand-alone PV system has been designed and tested using the proposed SAE to validate the performance of the developed prototype under various environmental conditions. The results demonstrate that the developed SAE has good accuracy in replicating the PV array characteristics than the conventional diodebased SAE. DOI: 10.61416/ceai.v25i3.8106","PeriodicalId":50616,"journal":{"name":"Control Engineering and Applied Informatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134958504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of angular correction algorithm for movement of agricultural mobile robots in a straight line","authors":"Ilker UNAL","doi":"10.61416/ceai.v25i3.8326","DOIUrl":"https://doi.org/10.61416/ceai.v25i3.8326","url":null,"abstract":"This paper proposes the angular correction algorithm for the autonomous navigation of the agricultural mobile robots, which are driven in a straight line, with simple hardware based on the data of the digital compass and the GPS receiver. The motion of the mobile robot was accomplished by the differential drive mechanism with four driving wheels in which the overall velocity is split between left and right wheels. The two-channel DC motor controller was used to drive motors. The digital compass was used to calculate the position angle of the mobile robot with respect to the target point. A Kalman filter was used to fuse the information from GPS and digital compass. In the proposed algorithm, the mobile robot is driven in a straight line along a predefined path by calculating in real time the deviation angle difference with respect to the target point. When the robot encounters an unexpected external force varying the desired path, it achieves a smooth and stabilized straight line movement by correcting the deviation angle difference. The performance of the mobile robot was evaluated based on a total of 18 straight lines in a farmland. Standard errors of cross track error (XTE) values of straight lines for each target point were analyzed. The mean of arithmetic means was found to be 4.14 cm. The mean of R-square was 0.990. This value shows that the proposed angular correction algorithm is useful in driving the mobile robot in a straight line. DOI: 10.61416/ceai.v25i3.8326","PeriodicalId":50616,"journal":{"name":"Control Engineering and Applied Informatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134958363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improving Position-Time Trajectory Accuracy in Vehicle Stop-and-Go Scenarios by Using a Mobile Robot as a Testbed","authors":"Murat Bakirci, Mecit Cetin","doi":"10.61416/ceai.v25i3.8365","DOIUrl":"https://doi.org/10.61416/ceai.v25i3.8365","url":null,"abstract":"This study sets an example of how mobile robotic vehicles can be used effectively in research on intelligent transportation systems. Especially the stop-and-go mobility seen in heavy traffic conditions was simulated with a mobile robot, and the study is focused on how to obtain distance-time trajectories more accurately under these conditions. System identification tests of the mobile robotic platform, whose kinematic model was developed, were also carried out, and all solutions regarding robot movement were obtained. For the congested traffic simulation, various stop-and-go points are designated on a predetermined straight route segment to mimic behavior of a vehicle in congested traffic. Robot trajectories were obtained under different scenarios by using both GPS data and a kinematic model through the utilization of motor encoders. More accurate and consistent trajectories were achieved by fusing these trajectories with the Extended Kalman Filter. The main contribution of this study is demonstrating how the number of stop-and-go positions can improve the accuracy in estimating the robot/vehicle trajectory. The paper shows how the cumulative error in predicting the trajectories in reduced as the number of stops increases. For example, the trajectory estimated for a scenario involving five stop-and-go points is 94% more accurate than that for the case with a single stop. DOI: 10.61416/ceai.v25i3.8365","PeriodicalId":50616,"journal":{"name":"Control Engineering and Applied Informatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134958359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synchronization Control for Discrete-Time Delayed Complex Cyber-Physical Networks Under False Data Injection Attacks","authors":"Chaoqun Zhu, Xuan Jia, Pan Zhang","doi":"10.61416/ceai.v25i3.8360","DOIUrl":"https://doi.org/10.61416/ceai.v25i3.8360","url":null,"abstract":"This paper is concerned with the synchronization control problem for discrete-time complex cyber-physical networks with mixed delays and false data injection attacks. The polytopic model of closed-loop synchronization error dynamics is established by considering the pattern characteristics of false data injection attacks and input delays, which has essentially different from the traditional handling method. More specifically, the proposed polytopic model utilizes the current state of the closed-loop synchronization error dynamics, thereby facilitating the reduction of possible conservatism. In such a framework, a nonlinear synchronization control method is developed to eliminate the negative impact of cyber attacks, and sufficient conditions are derived to guarantee that the closed-loop error dynamics ultimately exponentially bounded. In the meanwhile, the design procedure of the synchronization controller is proposed for underlying complex cyber-physical networks subject to mixed delays and false data injection attacks. Finally, an illustrative example is delivered to demonstrate the effectiveness of the proposed method. DOI: 10.61416/ceai.v25i3.8360","PeriodicalId":50616,"journal":{"name":"Control Engineering and Applied Informatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134958502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kehong Yuan, Youlin Shang, Haixiang Guo, Shaofei Zang, Zhonghua Liu
{"title":"A Precise and Adaptive Graph Regularized Low Rank Representation Model for Recognizing Oil-bearing","authors":"Kehong Yuan, Youlin Shang, Haixiang Guo, Shaofei Zang, Zhonghua Liu","doi":"10.61416/ceai.v25i3.8650","DOIUrl":"https://doi.org/10.61416/ceai.v25i3.8650","url":null,"abstract":"The recognition of oil-bearing formation is an important part in oil exploration, and recognition technology influences the predictive accuracy and efficiency. Low rank representation (LRR) has aroused much attention in the field of data mining. As a modified version, the low rank representation with adaptive graph regularization (LRR-AGR) exploits the global and local information of data for graph learning, and it simultaneously integrates distance regularization term, non-negative constraint and a rank constraint into the framework of LRR. However, how to balance these regularization terms according to the data greatly limits its clustering performance. To adaptively balance these regularization terms according to data and further improve the clustering performance, we propose a novel model named low-rank representation with adaptive parameters and graph regularization (LRR-APGR) in this paper. Firstly, a novel parameter optimization model is formulated and designed based on the framework of LRR-AGR and the feedback mechanism. Secondly, two global intelligent optimization algorithms, which can effectively solve the parameter optimization problem are presented based on particle swarm optimization (PSO) in multi-dimensional continuous space. Experimental results on the data oilsk81, oilsk83 and oilsk85 wells of Jianghan oil fields in China show that the proposed method can significantly improve the clustering performance and the predictive accuracy. DOI: 10.61416/ceai.v25i3.8650","PeriodicalId":50616,"journal":{"name":"Control Engineering and Applied Informatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134958491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and Patient-Oriented Control of A Rehabilitation Assistance Upper Exoskeleton","authors":"Huu-Toan Tran, Son Manh Tran","doi":"10.61416/ceai.v25i3.8341","DOIUrl":"https://doi.org/10.61416/ceai.v25i3.8341","url":null,"abstract":"Inspired by the difficulties behind specification requirements as well as realizing the applicable capacity of upper exoskeleton robots, this paper presents the design and development of an original prototype of Rehabilitation Assistance UPper EXoskeleton (RAUPEX). The exoskeleton is designed through the analysis of human's upper limb biomechanics and dynamics. Based on the requirements of human joint power, the solutions of mechanism and actuator for the exoskeleton are drawn. During development of the exoskeleton, a basic control hardware is built to ensure real-time control performance besides a custom-built control panel for users. A patient-oriented control strategy allows RAUPEX to assist patients with various disability level in rehabilitation. The robot's applicable efficiency has been evaluated through rehabilitation training tests on healthy persons as quasi-patients via fundamental criteria in the exoskeleton development. Normalized square sum of angular operator-exoskeleton errors that is $(25.3pm2.45)times10^{-3}$ for active control and is $(5.89pm0.42)times10^{-3}$ for passive control. Moreover, the resulting operator-exoskeleton interaction force which is maximum of $7.75$ N at upper arm and $4.32$ N at lower arm enables RAUPEX to accurately assist rehabilitation exercises without discomfort. Over $87%$ of experimental participants claimed to feel comfortable which proves the developed exoskeleton has the potential to increase efficiency and adaptation to users during rehabilitation procedure. DOI: 10.61416/ceai.v25i3.8341","PeriodicalId":50616,"journal":{"name":"Control Engineering and Applied Informatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134958361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mushu Wang, Xingxue Dong, Weigang Pan, Song Gao, Shuxin Wang
{"title":"Robust Path Planning Of Obstacle Avoidance For Unmanned delivery robot","authors":"Mushu Wang, Xingxue Dong, Weigang Pan, Song Gao, Shuxin Wang","doi":"10.61416/ceai.v25i2.8595","DOIUrl":"https://doi.org/10.61416/ceai.v25i2.8595","url":null,"abstract":"Aiming at complex road conditions and difficult path planning of semi-structured roads in a park, a robust path planning method based on sequential quadratic programming (SQP) algorithm optimization is proposed. Firstly, an improved vector field histogram (VFH) algorithm is used to determine the optimal passable area, and then the determination method of the target state is given based on the optimal passable area; Secondly, according to a starting point and the target state, a description method of obstacle avoidance path is given based on a piecewise quadratic Bezier curve. Then, the problem of curve parameter optimization is established based on the vehicle running curvature constraint and the direction change margin constraint of the target point, and the SQP algorithm is used to optimize the curve parameters; Finally, the effectiveness and practicability of the proposed method are verified by simulation experiments and real vehicle experiments. Compared with other methods, this method has the shortest path and better robustness. DOI: 10.61416/ceai.v25i2.8595","PeriodicalId":50616,"journal":{"name":"Control Engineering and Applied Informatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135354257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Linked Data Semantic Distance with Global Normalization for evaluating Semantic Similarity in a Taxonomy","authors":"Anna Formica, Francesco Taglino","doi":"10.61416/ceai.v25i2.8353","DOIUrl":"https://doi.org/10.61416/ceai.v25i2.8353","url":null,"abstract":"In this work the problem of evaluating semantic similarity in a taxonomy by relying on the notion of information content is investigated. In particular, a measure that takes into account not only the generic sense of a concept but also its intended sense in a given context is considered. Such a measure needs a semantic relatedness approach in order to evaluate the relatedness between the generic sense and the intended sense of a concept. In this work we show that relying on the Linked Data Semantic Distance with Global Normalization leads to higher Spearman's correlation values with human judgment with respect to the original proposal of the authors. DOI: 10.61416/ceai.v25i2.8353","PeriodicalId":50616,"journal":{"name":"Control Engineering and Applied Informatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135354262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Extension of the clustering identification by extending the Density Based Spatial Clustering of Applications with Noise approach to Multi-Input Multi-Output Piece Wise Affine systems: Application to an industrial robot","authors":"Zeineb Lassoued, Kamel Abderrahim","doi":"10.61416/ceai.v25i2.8523","DOIUrl":"https://doi.org/10.61416/ceai.v25i2.8523","url":null,"abstract":"In this paper the problem of clustering based identificationof a Multi-Input Multi-Output (MIMO) PieceWise Affinesystems (PWA) is considered. This approach, originallydesigned for systems with a Multiple-Input Single-Output(MISO) structure, is carried out by three main steps whichare data clustering, parameters vectors estimation and regionscomputing. Data clustering is the most important stepbecause the two other steps depend on the results given bythe used clustering algorithm. In case of MIMO PWA systems,we should cluster matrices of parametres which areconsidered high dimensionnal data. However, most of theconventional clustering algorithms do not work well in termsof effectiveness and efficiency since the similarity assessmentwhich is based on the distances between objects is fruitlessin high dimension space. Therefore, we propose an extensionof the DBSCAN (Density Based Spatial Clusteringof Applications with Noise) clustering approach for the identificationof MIMO PWA systems. The simulation resultspresented in this paper prouve the performance of the suggestedapproach. An application of the proposed approachto an industrial robot manipulator is also presented in orderto validate the simulation results. DOI: 10.61416/ceai.v25i2.8523","PeriodicalId":50616,"journal":{"name":"Control Engineering and Applied Informatics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135354263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}