Water Science & Technology最新文献

筛选
英文 中文
Effect of salinity on denitrification, membrane fouling and bacterial community in a fixed-bed biofilm membrane reactor 盐度对固定床生物膜反应器中的反硝化、膜堵塞和细菌群落的影响
Water Science & Technology Pub Date : 2024-02-20 DOI: 10.2166/wst.2024.050
Ning An, Lei Ma, Dameng Lian, Shuwei Wang
{"title":"Effect of salinity on denitrification, membrane fouling and bacterial community in a fixed-bed biofilm membrane reactor","authors":"Ning An, Lei Ma, Dameng Lian, Shuwei Wang","doi":"10.2166/wst.2024.050","DOIUrl":"https://doi.org/10.2166/wst.2024.050","url":null,"abstract":"\u0000 \u0000 In this study, a fixed-bed biofilm membrane bioreactor was used to assess denitrification and carbon removal performance, membrane fouling, composition, and the dynamics of microbial communities across 10 salinity levels. As salinity levels increased (from 0 to 30 g/L), the removal efficiency of total nitrogen and chemical oxygen demand decreased from 98 and 86% in Phase I to 25 and 45% in Phase X, respectively. Beyond a salinity level of 10 g/L, membrane fouling accelerated considerably. The analysis of fouling resistance distribution suggested that soluble microbial products (SMPs) were the primary cause of this phenomenon. The irregularity in microbial community succession reflected the varying adaptability of different bacteria to different salinity levels. The relative abundance of Sulfuritalea, Lentimircobium, Thauera, and Pseudomonas increased from 20.2 to 47.7% as the experiments progressed. Extracellular polymeric substances-related analysis suggested that Azospirillum plays a positive role in preserving the structural integrity of the biofilm carrier. The SMP-related analysis showed a positive correlation between Lentimircobium, Thauera, Pseudomonas, and the SMP content. These results suggested that these three bacterial genera significantly promoted the release of SMP under salt stress, which in turn led to severe membrane fouling.","PeriodicalId":505935,"journal":{"name":"Water Science & Technology","volume":"5 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139958238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated assessment of available water volume for sustainable sponge city construction – a case study in Xi'an, China 可持续海绵城市建设可用水量综合评估--中国西安案例研究
Water Science & Technology Pub Date : 2024-02-19 DOI: 10.2166/wst.2024.049
Li Luo, Dong Su, Tong Wang, Wenshan Guo
{"title":"Integrated assessment of available water volume for sustainable sponge city construction – a case study in Xi'an, China","authors":"Li Luo, Dong Su, Tong Wang, Wenshan Guo","doi":"10.2166/wst.2024.049","DOIUrl":"https://doi.org/10.2166/wst.2024.049","url":null,"abstract":"\u0000 \u0000 To address the lack of theoretical guidance for sponge city construction (SCC) in China, this study introduces a method to evaluate the available water volume (AWV) in urban watersheds. This evaluation is based on the water balance relationship, water volume, and ecological water demand (EWD). The Xi'an urban area was selected as a case study due to its water shortage and flooding issues. Results show monthly surface and subsurface AWV ranging between 53.06 and 53.98 million m3 and between 8,701.89 and 8,898.14 million m3, respectively. By maximizing the potential for surface AWV, an annual water supply of 527.75 million m3 could be provided, surpassing the annual artificial water consumption of 394.20 million m3, effectively addressing water scarcity. During the rainy season, implementing measures such as employing permeable paving materials, establishing wetlands and rainwater gardens, and constructing lakes and reservoirs can mitigate flooding caused by rainfall exceeding 32.8 mm. While the subsurface space in Xi'an holds significant potential for subsurface AWV utilization, revitalizing the ecological environment of subsurface water is crucial. Overall, the AWV theoretical framework offers a comprehensive solution to water shortage and flooding issues in the Xi'an urban area, serving as a vital theory for SCC.","PeriodicalId":505935,"journal":{"name":"Water Science & Technology","volume":"6 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139958754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A tolerant hydrologic technique for real-time selection of optimum QPFs from NWPMs for flood warning applications 从洪水预警应用中的西北太平洋湿地实时选择最佳 QPF 的宽容水文技术
Water Science & Technology Pub Date : 2024-02-17 DOI: 10.2166/wst.2024.046
Mahmoud Salah, Ashraf El-Mostafa, Mohamed Abdel Hamid Gad
{"title":"A tolerant hydrologic technique for real-time selection of optimum QPFs from NWPMs for flood warning applications","authors":"Mahmoud Salah, Ashraf El-Mostafa, Mohamed Abdel Hamid Gad","doi":"10.2166/wst.2024.046","DOIUrl":"https://doi.org/10.2166/wst.2024.046","url":null,"abstract":"\u0000 \u0000 The most important information required to successfully issue a flood warning is the quantitative precipitation forecasts (QPFs). This is important to run subsequent rainfall–runoff simulations. A rainfall–runoff simulation derives its accuracy mainly from the accuracy of the input QPFs. The dynamically based global numerical weather prediction models (NWPMs) are strong candidate sources of QPFs. A main problem is the real-time selection of which NWPM should be used to provide the QPFs for flood warning simulations. This paper develops an automated technique to solve this problem. The technique performs real-time comparisons with measured rainfall fields using a novel ‘tolerant’ hydrologic approach. The ‘tolerant’ approach performs the comparison on the basin scale and allows for timing shifts in the forecasts. This is because QPFs can be good but only a few hours early or late. Two events are used for illustration, and the proposed real-time application in flood warning is presented. The developed technique, employing the tolerant approach, could eliminate the effects of the timing shifts and, accordingly, succeeded to select the QPFs to be used. A Python package was developed for automation. The developed technique is expected to also be useful for offline assessments of historical performances of NWPMs.","PeriodicalId":505935,"journal":{"name":"Water Science & Technology","volume":"88 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139959454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of hybrid solar desalination systems: structure and performance 混合型太阳能海水淡化系统综述:结构与性能
Water Science & Technology Pub Date : 2024-02-16 DOI: 10.2166/wst.2024.042
Mohammed A. Alghassab
{"title":"A review of hybrid solar desalination systems: structure and performance","authors":"Mohammed A. Alghassab","doi":"10.2166/wst.2024.042","DOIUrl":"https://doi.org/10.2166/wst.2024.042","url":null,"abstract":"\u0000 The purpose of this study is to explore the architecture and functioning of hybrid solar desalination systems and investigate their potential as a sustainable solution for water purification. The study reveals that solar-powered desalination systems offer a remarkable alternative to traditional methods, as they rely on clean solar energy and produce no noise or sound pollution. In addition, they have demonstrated cost-effectiveness in generating drinking water, especially in desert regions and inaccessible areas. Furthermore, the research highlights the significance of incorporating waste heat energy into the desalination process. Also shows that utilizing waste heat energy can significantly reduce expenses and enhance the overall effectiveness of water desalination. Through an in-depth analysis of the fundamental principles and real-world applications, this study underscores the importance and rationale for implementing hybrid solar desalination systems. By effectively utilizing solar energy, these systems provide a sustainable approach to address water scarcity and ensure the efficient management of water and energy resources. This study emphasizes the fundamental importance of the structure of hybrid solar desalination systems fueled by solar energy in the efficient management of water resources. By combining technological innovations with renewable energy sources, these systems pave the way for a sustainable future.","PeriodicalId":505935,"journal":{"name":"Water Science & Technology","volume":"46 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139960450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Membrane distillation of wastewater: comparison of model and real organics 废水的膜蒸馏:模型与实际有机物的比较
Water Science & Technology Pub Date : 2024-02-16 DOI: 10.2166/wst.2024.045
Rasikh Habib, Mai Phuong, Muhammad Bilal Asif, Guangming Jiang, M. Sivakumar
{"title":"Membrane distillation of wastewater: comparison of model and real organics","authors":"Rasikh Habib, Mai Phuong, Muhammad Bilal Asif, Guangming Jiang, M. Sivakumar","doi":"10.2166/wst.2024.045","DOIUrl":"https://doi.org/10.2166/wst.2024.045","url":null,"abstract":"\u0000 \u0000 Fouling behaviour in membrane distillation (MD) processes plays a crucial role in determining their widespread acceptability. Most studies have primarily focused on model organic foulants, such as humic acid (HA) and sodium alginate (SA). This study investigates the fouling of a polytetrafluoroethylene membrane in a direct contact MD (DCMD) using model organics (i.e., HA and SA) and real wastewater. The results indicated that the flux decline (5–60%) was only observed during the initial phase of the operation with model organic foulants. In contrast, real wastewater caused a gradual decline in flux throughout the experiment in both the concentrate (40%) and continuous (90%) modes. The study also found significant differences in the fouling layer morphology, composition, and hydrophobicity between the model organic foulants and real wastewater. Fourier transform infrared spectroscopy findings demonstrated that the fouling layer formed by real wastewater varied significantly from model organics, which primarily comprised of protein-like and polysaccharide-like functional groups. Finally, liquid chromatography–organic carbon detection revealed that the fouling layer of the MD membrane with real wastewater was composed of 40.7% hydrophobic and 59.3% hydrophilic organics. This study suggests that model organics may not accurately reflect real wastewater fouling.","PeriodicalId":505935,"journal":{"name":"Water Science & Technology","volume":"45 49","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139961483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Source reduction and end treatment of acid mine drainage in closed coal mines of the Yudong River Basin 玉洞河流域封闭煤矿酸性矿井排水的源头削减和末端治理
Water Science & Technology Pub Date : 2024-01-02 DOI: 10.2166/wst.2024.002
Quanjia Wu, Xiangdong Li, Qiyan Feng, Xibin Li
{"title":"Source reduction and end treatment of acid mine drainage in closed coal mines of the Yudong River Basin","authors":"Quanjia Wu, Xiangdong Li, Qiyan Feng, Xibin Li","doi":"10.2166/wst.2024.002","DOIUrl":"https://doi.org/10.2166/wst.2024.002","url":null,"abstract":"\u0000 \u0000 After the closure of the Yudong coal mine, the pH value was approximately 3.0, and the Fe and Mn concentrations reached 380 and 69 mg/L, respectively, in the acid mine drainage (AMD), causing serious pollution to the water bodies in the nearby watershed. Combined with the formation conditions of AMD, the comprehensive treatment technology of source reduction–end treatment is adopted to treat the AMD. The treatment area of the goaf is 0.3 km3, the filling and grouting volume is about 6.7 m3, and the curtain grouting volume is 4,000 m3. Through the grouting and sealing treatment in the goaf, the water volume is reduced to less than 85% of the initial volume (100 m3/h). After the end treatment, the pH value of the effluent is around 7.0, the content of Fe and Mn is less than 0.1 mg/L, and the removal rate is above 99%. The project was subsequently operated at RMB 0.85 yuan/t. This project is aimed at the treatment of AMD from small coal mines in complex terrain conditions. It has the characteristics of low cost and high efficiency and can provide an effective treatment technology for AMD in southwestern China and areas with the same geological conditions.","PeriodicalId":505935,"journal":{"name":"Water Science & Technology","volume":"103 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139391408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effective removal of iron, nutrients, micropollutants, and faecal bacteria in constructed wetlands cotreating mine water and sewage treatment plant effluent 在共处理矿井水和污水处理厂废水的建构湿地中有效去除铁、营养物质、微污染物和粪便细菌
Water Science & Technology Pub Date : 2024-01-02 DOI: 10.2166/wst.2024.001
Jidapa Plaimart, Kishor Acharya, Adrian Blackburn, Wojciech Mrozik, R. Davenport, David Werner
{"title":"Effective removal of iron, nutrients, micropollutants, and faecal bacteria in constructed wetlands cotreating mine water and sewage treatment plant effluent","authors":"Jidapa Plaimart, Kishor Acharya, Adrian Blackburn, Wojciech Mrozik, R. Davenport, David Werner","doi":"10.2166/wst.2024.001","DOIUrl":"https://doi.org/10.2166/wst.2024.001","url":null,"abstract":"\u0000 \u0000 Regulators in England and Wales have set new targets under the Environment Act 2021 for freshwater quality by 2038 that include halving the length of rivers polluted by harmful metals from abandoned mines and reducing phosphorus loadings from treated wastewater by 80%. In this context, an intriguing win–win opportunity exists in the removal of iron from abandoned mines and phosphate from small sewage treatment plants by coprecipitation in constructed wetlands (CWs). We investigated such a CW located at Lamesley, Northeast England, which cotreats abandoned coal mine and secondary-treated sewage treatment plant effluents. We assessed the removal of nutrients, heavy metals, organic micropollutants, and faecal coliforms by the CW, and characterized changes in the water bacteriology comprehensively using environmental DNA. The CW effectively removed ammonium-nitrogen, phosphorus, iron, and faecal coliforms by an average of 86, 74, 98, and 75%, respectively, to levels below or insignificantly different from those in the receiving river. The CW also effectively removed micropollutants such as acetaminophen, caffeine, and sulpiride by 70–100%. Molecular microbiology methods showed successful conversion of sewage and mine water microbiomes into a freshwater microbiome. Overall, the CW significantly reduced impacts on the rural water environment with minimal operational requirements.","PeriodicalId":505935,"journal":{"name":"Water Science & Technology","volume":"120 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139391516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel measure for long-term sediment reduction inspired by dragonfly wings 受蜻蜓翅膀启发的长期减少泥沙新措施
Water Science & Technology Pub Date : 2023-12-26 DOI: 10.2166/wst.2023.403
Zhiwei Li, Bing Wang, Fei Wang, Bin Sun, Shuaikang Zhao
{"title":"A novel measure for long-term sediment reduction inspired by dragonfly wings","authors":"Zhiwei Li, Bing Wang, Fei Wang, Bin Sun, Shuaikang Zhao","doi":"10.2166/wst.2023.403","DOIUrl":"https://doi.org/10.2166/wst.2023.403","url":null,"abstract":"The sediment accumulation in drainage pipes has long been recognized as a significant concern in the environmental field. This study addresses sediment accumulation in drainage pipes by introducing an innovative bioinspired approach using various shapes and angles of plates for long-term sediment reduction. Through experiments and numerical simulations, the velocity field, the turbulent kinetic energy, the head loss, and the dynamic pressure distribution in the pipeline with plates are analyzed. Results demonstrate significant increases in local velocity, dynamic pressure, and turbulence energy due to the presence of plates. The sediment reduction performance shows a positive correlation with the angle for folded plates and a non-linear relation with curvature for curved plates. Notably, the superior performance of folded plates is attributed to their exceptional ability to induce vortex formation. The head loss due to sediment reduction measures increases linearly as the angle and the curvature increase. Furthermore, the intentional induction of strong eddies and high shear flow using the undulating topography created by the locally installed folding plates in the pipeline was the main cause of sediment reduction. This novel approach holds promise for more efficient and sustainable sediment reduction in drainage systems.","PeriodicalId":505935,"journal":{"name":"Water Science & Technology","volume":"86 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139154888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetite-boosted syntrophic conversion of acetate to methane during thermophilic anaerobic digestion 嗜热厌氧消化过程中磁铁矿促进醋酸盐向甲烷的合成转化
Water Science & Technology Pub Date : 2023-12-23 DOI: 10.2166/wst.2023.421
Zi-Fan Wu, Zhao-Long Li, Qing-Hua Liu, Zhi-Man Yang
{"title":"Magnetite-boosted syntrophic conversion of acetate to methane during thermophilic anaerobic digestion","authors":"Zi-Fan Wu, Zhao-Long Li, Qing-Hua Liu, Zhi-Man Yang","doi":"10.2166/wst.2023.421","DOIUrl":"https://doi.org/10.2166/wst.2023.421","url":null,"abstract":"Using a batch thermophilic anaerobic system established with 60 mL serum bottles, the mechanism on how microbial enrichments obtained from magnetite-amended paddy soil via repeated batch cultivation affected methane production from acetate was investigated. Magnetite-amended enrichments (MAEs) can improve the methane production rate rather than the methane yield. Compared with magnetite-unamended enrichments, the methane production rate in MAE was improved by 50%, concomitant with the pronounced electrochemical response, high electron transfer capacity, and fast acetate degradation. The promoting effects might be ascribed to direct interspecies electron transfer facilitated by magnetite, where magnetite might function as electron conduits to link the acetate oxidizers (Anaerolineaceae and Peptococcaceae) with methanogens (Methanosarcinaceae). The findings demonstrated the potential application of MAE for boosting methanogenic performance during thermophilic anaerobic digestion.","PeriodicalId":505935,"journal":{"name":"Water Science & Technology","volume":"25 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139162158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning approaches for adequate prediction of flow resistance in alluvial channels with bedforms 用机器学习方法充分预测带床面冲积河道的流动阻力
Water Science & Technology Pub Date : 2023-12-23 DOI: 10.2166/wst.2023.396
A. Mir, M. Patel
{"title":"Machine learning approaches for adequate prediction of flow resistance in alluvial channels with bedforms","authors":"A. Mir, M. Patel","doi":"10.2166/wst.2023.396","DOIUrl":"https://doi.org/10.2166/wst.2023.396","url":null,"abstract":"In natural rivers, flow conditions are mainly dependent on flow resistance and type of roughness. The interactions among flow and bedforms are complex in nature as bedform dynamics primarily regulate the flow resistance. Manning's equation is the most frequently used equation for this purpose. Therefore, there is a need to develop alternate reliable techniques for adequate prediction of Manning's roughness coefficient (n) in alluvial channels with bedforms. Thus, the main objective of this study is to utilize machine learning (ML) models for predicting ‘n’ based on the six input features. The performance of ML models was assessed using Pearson's coefficient (R2), sensitivity analysis, Taylor's diagram, box plots, and K-fold method has been used for the cross-validation. Based on the output of the current work, models such as random forest, extra trees regression, and extreme gradient boosting performed extremely well (R2 ≥ 0.99), whereas, Lasso Regression models showed moderate efficiency in predicting roughness. The sensitivity analysis indicated that the energy grade line has a significant impact in predicting the roughness as compared to the other parameters. The alternate approach utilized in the present study provides insights into riverbed characteristics, enhancing the understanding of the complex relationship between roughness and other independent parameters.","PeriodicalId":505935,"journal":{"name":"Water Science & Technology","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139162324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信