Romansa Romansa, Adhes Gamayel, Ykp Saleh, M. Zaenudin
{"title":"Simulasi Beban Rangka Mesin Pencacah Plastik Menggunakan Software Autodesk Inventor","authors":"Romansa Romansa, Adhes Gamayel, Ykp Saleh, M. Zaenudin","doi":"10.56904/imejour.v1i1.77","DOIUrl":"https://doi.org/10.56904/imejour.v1i1.77","url":null,"abstract":"Di dunia industri kerangka/desain dalam sebuah proyek menjadi sebuah salah satu hal yang wajib ada. Baik model, konsep desain, perhitungan konsep, serta analisis kekuatan rangka menjadi hal yang harus di lengkapi agar mutu yang ada dalam desain tersebut terjamin kerangka mesin menjadi hal yang sangat berperan penting dalam sebuah konsep rancangan pembuatan alat mesin pencacah plastik Karena menjadi tempat beradanya/menempelnya mesin, komponen lainnya. Pada hal ini penulis memberlakukan atau mengambil topik analisis kekuatan rangka, yang terdapat pada rangka tersebut. Sehingga dapat diketahui nilai-nilai kritis dari rangka yang akan dibuat agar mendapatkan acuan untuk operator agar aman untuk digunakan. Pengujian kekuatan analisis rangka ini menggunakan software Autodesk Inventor versi student selanjutnya melalui simulasi rangka mesin pencacah plastik mesin. Untuk selanjutnya didapatkan tegangan maksimum rangka dari segi perhitungan secara teoritis atau pun pengujian maksimum secara simulasi menggunakan. Sehingga didapatkan nilai tegangan maksimum secara teoritis dan tegangan maksimum secara simulasi. Desain rangka dengan besi hollow menunjukkan performa terbaik pada pengujian kekuatan, sehingga disarankan untuk digunakan pada rancang bangun alat pencacah plastik.","PeriodicalId":505804,"journal":{"name":"Integrated Mechanical Engineering Journal","volume":"58 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139191737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bondan Sugiarto, Mohamad Zaenudin, Yasya Khalif Perdana Saleh
{"title":"Perbandingan Nilai Kalor Briket Arang dengan Campuran Bahan Baku Buah Bintaro dengan Batang Pohon Jambu Biji Menggunakan Alat Press Penggerak Pneumatik","authors":"Bondan Sugiarto, Mohamad Zaenudin, Yasya Khalif Perdana Saleh","doi":"10.56904/imejour.v1i1.78","DOIUrl":"https://doi.org/10.56904/imejour.v1i1.78","url":null,"abstract":"Penelitian ini bertujuan untuk mengetahui beberapa sifat fisik dan kimia briket arang dari pemanfaatan buah bintaro dan batang pohon jambu biji sebagai bahan baku pembuatan briket arang. Oleh karena itu tujuan dari penelitian ini adalah untuk mengetahui potensi buah bintaro dan batang pohon jambu biji untuk pembuatan briket arang sebagai alternatif bahan bakar serta untuk mengetahui sifat fisik dan kimia dari briket yang dihasilkan agar diketahui kualitasnya sebagai bahan bakar atau energi dibandingkan briket konsumtif dipasaran. Peneliti mengharapkan hasil dari penelitian ini dapat memberikan informasi yang baru untuk memastikan pemanfaatan buah bintaro dan batang pohon jambu biji sebagai bahan baku pembuatan briket arang. Penelitian ini dilaksanakan selama tiga bulan dan lokasi pengambilan bahan baku di Kampung Tambun Gg. Gabus Desa Buni Bakti Kecamatan Babelan Kabupaten Bekasi Jawa Barat. Proses penelitian ini dilakukan dengan diawali persiapan bahan baku, pengarangan, selanjutnya arang dihaluskan dan dicampur dengan perekat (tapioka), selanjutnya pencetakan serta pengeringan. Kemudian briket melalui tahap pengujian yaitu Kerapatan pada briket, laju pembakaran, kadar abu dan nilai kalor pada briket. Dari hasil pengamatan dan penelitian menunjukkan bahwa briket arang buah bintaro dan batang pohon jambu biji diketahui tingkat kerapatan tertinggi adalah 0.77 gram/cm3. Nilai laju pembakaran terendah adalah 0.20 gram/menit. Nilai kalor tertinggi adalah sebesar 7888 kkal/kg dan Nilai kadar abu terendah adalah 25%.","PeriodicalId":505804,"journal":{"name":"Integrated Mechanical Engineering Journal","volume":"29 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139189125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pengaruh Variasi Stuktur Rangka Terhadap Kekuatan Pembebanan Pada Stasiun Pengisian Daya Listrik dengan Panel Surya","authors":"Ade Suparman, Ade Sunardi, Mohamad Zaenudin","doi":"10.56904/imejour.v1i1.75","DOIUrl":"https://doi.org/10.56904/imejour.v1i1.75","url":null,"abstract":"The use of solar panels in electric power charging stations is becoming increasingly popular as part of efforts to adopt renewable energy sources. In this context, the structural framework supporting the solar panels plays a crucial role in maintaining the stability and reliability of the system. Therefore, this thesis aims to investigate the influence of various structural framework variations on the strength of static loading in solar-powered electric charging stations. The research methodology employed simulation of static loading at three different load levels, namely 40 kg, 50 kg, and 60 kg. The analysis was conducted by comparing the equivalent stresses and total deformations between \"Design 1\" and \"Design 2\" at each load level. The research findings reveal significant differences in equivalent stresses and total deformations between the two designs at each load level. Design 1, with a stiffer structural framework, exhibited higher equivalent stresses and greater total deformations compared to Design 2. Consequently, this study provides a deeper understanding of the influence of various structural framework variations on the strength of static loading in solar panel support structures. These findings can serve as a basis for optimizing the structural design of solar-powered electric charging systems.","PeriodicalId":505804,"journal":{"name":"Integrated Mechanical Engineering Journal","volume":"40 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139190025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rancang Bangun Stasiun Pengisian Daya Listrik Berbasis Panel Surya dengan Variasi Profil Pada Penopang Panel Surya","authors":"A. Saputra, Ade Sunardi, Mohamad Zaenudin","doi":"10.56904/imejour.v1i1.73","DOIUrl":"https://doi.org/10.56904/imejour.v1i1.73","url":null,"abstract":"Solar panel-based electric charging stations are a combination of electricity sources and solar panels, allowing efficient and effective charging and helping to source electricity from natural energy in the form of renewable energy, namely the sun. The use of solar panels as the main energy source can reduce dependence on limited energy sources and produce lower greenhouse gas emissions and reduce dependence on fossil energy sources. The purpose of this thesis is to design and analyze the strength and durability of solar panel-based electric charging stations on their supports. The method used in this study is quantitative data taken using Ansys software simulations. The results showed that Design 1 on the solar panel supports had a maximum deformation of 0.2397 mm at an angle of 70 and design 2 produced a maximum deformation of 0.0052439 mm at an angle of 70 to the right/left. Based on these results, it can be concluded that the design of 1 solar panel support is better in terms of strength and durability because the load on the solar panel that is on the support only has an effect of 0.2397 mm which can withstand a load of around 320 N.","PeriodicalId":505804,"journal":{"name":"Integrated Mechanical Engineering Journal","volume":"149 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139195418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analisis Ketahanan Rangka Stasiun Pengisian Kendaraan Listrik Berbasis Panel Surya Portabel Terhadap Laju Angin","authors":"M. Imam, Ade Sunardi, Mohamad Zaenudin","doi":"10.56904/imejour.v1i1.76","DOIUrl":"https://doi.org/10.56904/imejour.v1i1.76","url":null,"abstract":"High wind velocity can induce external pressures and loads on the structural framework of an Electric Vehicle Charging Station (EVCS), jeopardizing the overall stability and structural integrity of the framework. The objective of this research is to ascertain the magnitude of aerodynamic drag force and the maximum pressure values on the surface of the EVCS framework, with respect to variations in wind velocity. The methodology employed in this study involves Computational Fluid Dynamics (CFD) simulations utilizing the Solidworks Flow Simulation. Three wind velocity scenarios were considered: 3 km/h, 6 km/h, and 9 km/h, allowing for the observation of airflow acceleration phenomena, aerodynamic drag force values, and peak pressure distributions on the EVCS framework's surface. Research findings reveal that the aerodynamic drag force at a wind velocity of 3 km/h measures 22,34 N, escalating to 90,42 N at 6 km/h wind velocity, and reaching 202,7 N at 9 km/h wind velocity. Furthermore, the highest-pressure value at a wind velocity of 3 km/h is 101325,45 Pa. As the wind velocity increases to 6 km/h, the maximum pressure value rises to 101338,18 Pa. Under the condition of the highest input wind velocity, i.e., 9 km/h, the peak pressure reaches 101353,46 Pa.","PeriodicalId":505804,"journal":{"name":"Integrated Mechanical Engineering Journal","volume":"22 14","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139193914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}