基于太阳能电池板的便携式电动汽车充电站框架抗风速耐久性分析

M. Imam, Ade Sunardi, Mohamad Zaenudin
{"title":"基于太阳能电池板的便携式电动汽车充电站框架抗风速耐久性分析","authors":"M. Imam, Ade Sunardi, Mohamad Zaenudin","doi":"10.56904/imejour.v1i1.76","DOIUrl":null,"url":null,"abstract":"High wind velocity can induce external pressures and loads on the structural framework of an Electric Vehicle Charging Station (EVCS), jeopardizing the overall stability and structural integrity of the framework. The objective of this research is to ascertain the magnitude of aerodynamic drag force and the maximum pressure values on the surface of the EVCS framework, with respect to variations in wind velocity. The methodology employed in this study involves Computational Fluid Dynamics (CFD) simulations utilizing the Solidworks Flow Simulation. Three wind velocity scenarios were considered: 3 km/h, 6 km/h, and 9 km/h, allowing for the observation of airflow acceleration phenomena, aerodynamic drag force values, and peak pressure distributions on the EVCS framework's surface. Research findings reveal that the aerodynamic drag force at a wind velocity of 3 km/h measures 22,34 N, escalating to 90,42 N at 6 km/h wind velocity, and reaching 202,7 N at 9 km/h wind velocity. Furthermore, the highest-pressure value at a wind velocity of 3 km/h is 101325,45 Pa. As the wind velocity increases to 6 km/h, the maximum pressure value rises to 101338,18 Pa. Under the condition of the highest input wind velocity, i.e., 9 km/h, the peak pressure reaches 101353,46 Pa.","PeriodicalId":505804,"journal":{"name":"Integrated Mechanical Engineering Journal","volume":"22 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analisis Ketahanan Rangka Stasiun Pengisian Kendaraan Listrik Berbasis Panel Surya Portabel Terhadap Laju Angin\",\"authors\":\"M. Imam, Ade Sunardi, Mohamad Zaenudin\",\"doi\":\"10.56904/imejour.v1i1.76\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High wind velocity can induce external pressures and loads on the structural framework of an Electric Vehicle Charging Station (EVCS), jeopardizing the overall stability and structural integrity of the framework. The objective of this research is to ascertain the magnitude of aerodynamic drag force and the maximum pressure values on the surface of the EVCS framework, with respect to variations in wind velocity. The methodology employed in this study involves Computational Fluid Dynamics (CFD) simulations utilizing the Solidworks Flow Simulation. Three wind velocity scenarios were considered: 3 km/h, 6 km/h, and 9 km/h, allowing for the observation of airflow acceleration phenomena, aerodynamic drag force values, and peak pressure distributions on the EVCS framework's surface. Research findings reveal that the aerodynamic drag force at a wind velocity of 3 km/h measures 22,34 N, escalating to 90,42 N at 6 km/h wind velocity, and reaching 202,7 N at 9 km/h wind velocity. Furthermore, the highest-pressure value at a wind velocity of 3 km/h is 101325,45 Pa. As the wind velocity increases to 6 km/h, the maximum pressure value rises to 101338,18 Pa. Under the condition of the highest input wind velocity, i.e., 9 km/h, the peak pressure reaches 101353,46 Pa.\",\"PeriodicalId\":505804,\"journal\":{\"name\":\"Integrated Mechanical Engineering Journal\",\"volume\":\"22 14\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrated Mechanical Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56904/imejour.v1i1.76\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Mechanical Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56904/imejour.v1i1.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高风速会对电动汽车充电站(EVCS)的结构框架造成外部压力和负荷,从而危及框架的整体稳定性和结构完整性。本研究的目的是确定风速变化对电动汽车充电站框架表面的空气阻力大小和最大压力值。本研究采用的方法包括利用 Solidworks Flow Simulation 进行计算流体动力学(CFD)模拟。考虑了三种风速情况:分别为 3 公里/小时、6 公里/小时和 9 公里/小时,以观察气流加速现象、空气阻力值以及 EVCS 框架表面的峰值压力分布。研究结果表明,风速为 3 千米/小时时的空气阻力为 22.34 牛顿,风速为 6 千米/小时时增加到 90.42 牛顿,风速为 9 千米/小时时达到 202.7 牛顿。此外,风速为 3 km/h 时的最高压力值为 101325.45 Pa。在最高输入风速(即 9 km/h)条件下,压力峰值达到 101353.46 Pa。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analisis Ketahanan Rangka Stasiun Pengisian Kendaraan Listrik Berbasis Panel Surya Portabel Terhadap Laju Angin
High wind velocity can induce external pressures and loads on the structural framework of an Electric Vehicle Charging Station (EVCS), jeopardizing the overall stability and structural integrity of the framework. The objective of this research is to ascertain the magnitude of aerodynamic drag force and the maximum pressure values on the surface of the EVCS framework, with respect to variations in wind velocity. The methodology employed in this study involves Computational Fluid Dynamics (CFD) simulations utilizing the Solidworks Flow Simulation. Three wind velocity scenarios were considered: 3 km/h, 6 km/h, and 9 km/h, allowing for the observation of airflow acceleration phenomena, aerodynamic drag force values, and peak pressure distributions on the EVCS framework's surface. Research findings reveal that the aerodynamic drag force at a wind velocity of 3 km/h measures 22,34 N, escalating to 90,42 N at 6 km/h wind velocity, and reaching 202,7 N at 9 km/h wind velocity. Furthermore, the highest-pressure value at a wind velocity of 3 km/h is 101325,45 Pa. As the wind velocity increases to 6 km/h, the maximum pressure value rises to 101338,18 Pa. Under the condition of the highest input wind velocity, i.e., 9 km/h, the peak pressure reaches 101353,46 Pa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信