Bianca Schacherl, Kiara Maurer, Martin Schäfer, Yvonne Remde, Frank Geyer, Annika Fried, Steffen Alexander Happel, Martina Benešová-Schäfer
{"title":"Concept validation of separations for thorium-based radionuclide generator systems for medical application","authors":"Bianca Schacherl, Kiara Maurer, Martin Schäfer, Yvonne Remde, Frank Geyer, Annika Fried, Steffen Alexander Happel, Martina Benešová-Schäfer","doi":"10.3389/fnuen.2024.1379996","DOIUrl":"https://doi.org/10.3389/fnuen.2024.1379996","url":null,"abstract":"Targeted alpha therapy (TαT) represents an emerging and cutting-edge treatment option for patients dealing with highly challenging metastatic cancer diseases. Critically, the limited supply of alpha-particle-emitting radionuclides, so-called alpha in vivo nanogenerators, hampers wider utilization of TαT in clinical settings. This could effectively be circumvented by alternative production routes, including straightforward purification and reformulation strategies. Radionuclide generators offering great potential in simple and robust elution strategies can be provided that still adhere to high radioisotopic, radionuclidic, and radiochemical purity criteria. This study takes a first step towards novel separation strategies by providing additional sources of alpha in vivo nanogenerators for TαT through experiments with various metal surrogates. With different systems, 232Th/natBa was used as a radionuclide generator analogue to 227Th/223Ra, and 232Th/natBa/natLa was used as a triplet analogue to 229Th/225Ra/225Ac. Three selective resins (UTEVA, TEVA, DGA-N) were evaluated for the 232Th/natBa system. Two perturbations of the best-performing resin were further evaluated using a larger diameter column and 1 week of equilibration. For the 232Th/natBa/natLa separation system, a combined column with two selective resins (TK200, TK101) was employed and evaluated. The results thus obtained pave the way for alternative separation strategies in radioactive proof-of-concept validation in the near future.","PeriodicalId":505786,"journal":{"name":"Frontiers in Nuclear Engineering","volume":"51 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luke R. Sadergaski, Jeffrey D. Einkauf, L. Delmau, Jonathan D. Burns
{"title":"Leveraging design of experiments to build chemometric models for the quantification of uranium (VI) and HNO3 by Raman spectroscopy","authors":"Luke R. Sadergaski, Jeffrey D. Einkauf, L. Delmau, Jonathan D. Burns","doi":"10.3389/fnuen.2024.1411840","DOIUrl":"https://doi.org/10.3389/fnuen.2024.1411840","url":null,"abstract":"Partial least squares regression (PLSR) and support vector regression (SVR) models were optimized for the quantification of U(VI) (10–320 g L−1) and HNO3 (0.6–6 M) by Raman spectroscopy with optimized calibration sets chosen by optimal design of experiments. The designed approach effectively minimized the number of samples in the calibration set for PLSR and SVR by selecting sample concentrations with a quadratic process model, despite complex confounding and covarying spectral features in the spectra. The top PLS2 model resulted in percent root mean square errors of prediction for U(VI), HNO3, and NO3− of 3.7%, 3.6%, and 2.9%, respectively. PLS1 models performed similarly despite modeling an analyte with a majority linear response (i.e., uranyl symmetric stretch) and another with more covarying vibrational modes (i.e., HNO3). Partial least squares (PLS) model loadings and regression coefficients were evaluated to better understand the relationship between weaker Raman bands and covarying spectral features. Support vector machine models outperformed PLS1 models, resulting in percent root mean square error of prediction values for U(VI) and HNO3 of 1.5% and 3.1%, respectively. The optimal nonlinear SVR model was trained using a similar number of samples (11) compared with the PLSR model, even though PLS is a linear modeling approach. The generic D-optimal design presented in this work provides a robust statistical framework for selecting training set samples in disparate two-factor systems. This approach reinforces Raman spectroscopy for the quantification of species relevant to the nuclear fuel cycle and provides a robust chemometric modeling approach to bolster online monitoring in challenging process environments.","PeriodicalId":505786,"journal":{"name":"Frontiers in Nuclear Engineering","volume":"10 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emily De Stefanis, K. Ramić, Judith Vidal, Youyang Zhao, L. Gallington, Ryan Bedell, Li (Emily) Liu
{"title":"Ab-initio molecular dynamics study of eutectic chloride salt: MgCl2–NaCl–KCl","authors":"Emily De Stefanis, K. Ramić, Judith Vidal, Youyang Zhao, L. Gallington, Ryan Bedell, Li (Emily) Liu","doi":"10.3389/fnuen.2024.1341754","DOIUrl":"https://doi.org/10.3389/fnuen.2024.1341754","url":null,"abstract":"Ionic liquid materials are viable candidates as a heat transfer fluid (HTF) in a wide range of applications, notably within concentrated solar power (CSP) technology and molten salt reactors (MSRs). For next-generation CSP and MSR technologies that strive for higher power generation efficiency, a HTF with wide liquid phase range and energy storage capabilities is crucial. Studies have shown that eutectic chloride salts exhibit thermal stability at high temperatures, high heat storage capacity, and are less expensive than nitrate and carbonate salts. However, the experimental data needed to fully evaluate the potential of eutectic chloride salts as a HTF contender are scarce and entail large uncertainties. Considering the high cost and potential hazards associated with the experimental methods used to determine the properties of ionic liquids, molecular modeling can be used as a viable alternative resource. In this study, the eutectic ternary chloride salt MgCl2–NaCl–KCl is modeled using ab-initio molecular dynamics simulations (AIMDs) in the liquid phase. Using the simulated data, the thermophysical and transport properties of eutectic chloride salt can be calculated: density, viscosity, heat capacity, diffusion coefficient, and ionic conductivity. For an initial model validation, experimental pair-distribution function data were obtained from X-ray total scattering techniques and compared to the theoretical pair-distribution function. Additionally, theoretical viscosity values are compared to experimental viscosity values for a similar system. The results provide a starting foundation for a MgCl2–NaCl–KCl model that can be extended to predict other fundamental properties.","PeriodicalId":505786,"journal":{"name":"Frontiers in Nuclear Engineering","volume":"32 47","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141800632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Demonstrating autonomous controls on hardware test beds is a necessity for successful missions to Mars and beyond","authors":"N. D. B. Ezell","doi":"10.3389/fnuen.2024.1308045","DOIUrl":"https://doi.org/10.3389/fnuen.2024.1308045","url":null,"abstract":"NASA and the Department of Defense are planning for a mission to Mars in the 2030s–2040s using nuclear thermal propulsion (NTP). NTP uses a nuclear reactor to heat flowing hydrogen and create thrust. A serious concern for crewed and uncrewed missions to Mars is the loss of reactor control. The reactor startup and initial rocket impulse are initiated in cislunar or near-earth orbital regions; therefore, radio communications between ground control and the NTP engine should occur in real time. However, radio communications can take more than 20 min, depending on planet positions, to reach Mars orbiters from ground control. To address this delay, local autonomous controls are implemented onboard the NTP engine to ensure acceptable operation. However, autonomous controls have not been demonstrated or implemented in research or power reactor contexts because of safety and reliability concerns. To enable autonomous controls development, demonstration, and validation, Oak Ridge National Laboratory has created a nonnuclear hardware-in-the-loop test bed. Sensors throughout the test bed relay system status and hardware response to the user control algorithm, including measurements of temperature, flow, pressure of a loop, control drum position, and drum speed. This paper discusses the development of this facility and user accessibility.","PeriodicalId":505786,"journal":{"name":"Frontiers in Nuclear Engineering","volume":"27 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141815335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrés G. Muñoz, A. Abdelouas, Ursula Alonso, Ana María Fernández, R. Bernier-Latmani, Andrea Cherkouk, R. Gaggiano, James Hesketh, Nick Smart, C. Padovani, K. Mijnendonckx, Vanessa Montoya, Andrés Idiart, Arnau Pont, Olga Riba, Nicolas Finck, Ashutosh R. Singh, Fraser King, N. Diomidis
{"title":"WP15 ConCorD state-of-the-art report (container corrosion under disposal conditions)","authors":"Andrés G. Muñoz, A. Abdelouas, Ursula Alonso, Ana María Fernández, R. Bernier-Latmani, Andrea Cherkouk, R. Gaggiano, James Hesketh, Nick Smart, C. Padovani, K. Mijnendonckx, Vanessa Montoya, Andrés Idiart, Arnau Pont, Olga Riba, Nicolas Finck, Ashutosh R. Singh, Fraser King, N. Diomidis","doi":"10.3389/fnuen.2024.1404739","DOIUrl":"https://doi.org/10.3389/fnuen.2024.1404739","url":null,"abstract":"A sealed container for the geological disposal of spent nuclear fuel and vitrified high-level waste is the only component of a deep geological repository that provides complete containment of radionuclides. As such, attention is focused on its lifetime. The lifetime of the container is influenced by material degradation processes during disposal and is typically of the order of several millennia and, for some container materials, up to one million years. Designing, manufacturing, and predicting the performance of containers over such long periods requires an in-depth understanding of their material properties, fabrication processes, and degradation mechanisms. Scientific and technological progress can improve both the performance of containers and the robustness of lifetime predictions. Optimization of these aspects is of primary importance for many national radioactive waste disposal programs. In this article, the state of the art of complex coupled degradation processes, as well as the optimization potential of novel container materials, is presented. Furthermore, the existing tools allowing the prediction of long-term barrier integrity are discussed.","PeriodicalId":505786,"journal":{"name":"Frontiers in Nuclear Engineering","volume":" 41","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141826766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J.C. Lewis, Ross Springell, Christopher Bell, Rebecca Nicholls, Jacek Wasik, L. Harding, Mahima Gupta, Janne Pakarinen, G. Baldinozzi, David Andersson, Xiaofeng Guo, S. Conradson
{"title":"Charge-lattice coupling and the dynamic structure of the U–O distribution in UO2+x","authors":"J.C. Lewis, Ross Springell, Christopher Bell, Rebecca Nicholls, Jacek Wasik, L. Harding, Mahima Gupta, Janne Pakarinen, G. Baldinozzi, David Andersson, Xiaofeng Guo, S. Conradson","doi":"10.3389/fnuen.2024.1346678","DOIUrl":"https://doi.org/10.3389/fnuen.2024.1346678","url":null,"abstract":"The different structures and behaviors of UO2+x observed in crystallographic and local structure measurements were examined by extended X-ray absorption fine structure (EXAFS) measurements of pristine UO2.0, p+ and He2+ irradiated UO2.0, and, at multiple temperatures, bulk U4O9 and U3O7 and thin film U4O9-δ on an epitaxial substrate. The disorder caused by irradiation is mostly limited to increased widths of the existing U–O/U pair distributions, with any new neighbor shells being minor. As has been previously reported, the disorder caused by oxidative addition to U4O9 and U3O7 is much more extensive, resulting in multisite U–O distributions and greater reduction of the U–U amplitude with different distributions in bulk and thin-film U4O9. This includes the significant spectral feature near R = 1.2 Å for all U4O9 and U3O7 samples fit with a U-oxo type moiety with a U–O distance around 1.7 Å. In addition to indicating that these anomalies only occur in mixed valence materials, this work confirms the continuous rearrangement of the U–O distributions from 10 to 250 K. Although these variations of the structure are not observed in crystallography, their prominence in the EXAFS indicates that the dynamic structure underlying these effects is an essential factor of these materials.","PeriodicalId":505786,"journal":{"name":"Frontiers in Nuclear Engineering","volume":" 42","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141829511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial: Plutonium legacy storage and degradation","authors":"Edgar Buck, Robin Taylor","doi":"10.3389/fnuen.2024.1447819","DOIUrl":"https://doi.org/10.3389/fnuen.2024.1447819","url":null,"abstract":"","PeriodicalId":505786,"journal":{"name":"Frontiers in Nuclear Engineering","volume":"117 26","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141666674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Radiation chemical processes in the water layer on the surface of PuO2","authors":"Howard E. Sims, Robin M. Orr","doi":"10.3389/fnuen.2024.1294584","DOIUrl":"https://doi.org/10.3389/fnuen.2024.1294584","url":null,"abstract":"It is generally accepted that radiolysis of water on the surface of PuO2 by alpha particles is the source of H2 which can cause pressurisation in sealed storage containers if the material is not adequately conditioned before packing. The mechanisms for this have not been discussed in detail previously. Radiolysis mechanisms of bulk water are summarised and then applied to water at the surface of PuO2. It is shown that the radiolysis processes occurring on timescales of less than 1 ps after energy deposition could have an impact on the storage behaviour of the PuO2 and the potential gas volume generated. Some of the radiolysis products are highly reactive and would be expected to react with plutonium at the surface, affecting the usual water radiolysis processes. A corollary of this observation is that the surface should not be considered a completely crystalline PuO2 solid. It is also highlighted that whilst there are significant uncertainties in the radiolysis process at the PuO2 surface there are also significant uncertainties in H2 formation mechanisms in bulk water. Finally, methods to model the radiolysis process at the surface and the prospects for predictive models are briefly discussed with suggestions for future areas of development.","PeriodicalId":505786,"journal":{"name":"Frontiers in Nuclear Engineering","volume":" 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140690797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research on active and passive schemes for safety improvement of nuclear energy hydrogen production system","authors":"Qunxiang Gao, Qi Sun, Ping Zhang, Gangyong Zhao, Wei Peng","doi":"10.3389/fnuen.2024.1381737","DOIUrl":"https://doi.org/10.3389/fnuen.2024.1381737","url":null,"abstract":"Nuclear hydrogen production has the advantages of large-scale and low carbon emissions, and is expected to play an active role in the energy transition process. However, the storage and transportation of hydrogen pose potential risks of leakage and diffusion when connected to high-pressure hydrogen storage tanks and pipelines. To address this concern, this study focused on designing three distinct safety improvement schemes tailored for potential hydrogen leakage accidents. These schemes encompassed a passively distributed arrangement of obstacles (Scheme 1), a passively centralized arrangement of obstacles (Scheme 2), and an active fan array blowing (Scheme 3). Numerical simulation methods were applied on extensive spatial scales for relevant calculations. The results revealed that all three schemes effectively reduced the diffusion distance of combustible hydrogen. Specifically, at lower ambient wind speeds, Scheme 1, Scheme 2, and Scheme 3 achieved the shortest diffusion distances of 123 m, 56 m, and 46 m, respectively. Meanwhile, at higher ambient wind speeds, the corresponding distances were 282 m, 100 m, and 79 m. These results collectively offer valuable insights to mitigate the risk of leakage accidents in nuclear hydrogen production systems.","PeriodicalId":505786,"journal":{"name":"Frontiers in Nuclear Engineering","volume":"21 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140714495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}