ESAIM: Mathematical Modelling and Numerical Analysis最新文献

筛选
英文 中文
Convergent autoencoder approximation of low bending and low distortion manifold embeddings 低弯曲和低失真流形嵌入的收敛自动编码器近似
ESAIM: Mathematical Modelling and Numerical Analysis Pub Date : 2023-11-16 DOI: 10.1051/m2an/2023088
Juliane Braunsmann, Marko Rajković, Benedikt Wirth, Martin Rumpf
{"title":"Convergent autoencoder approximation of low bending and low distortion manifold embeddings","authors":"Juliane Braunsmann, Marko Rajković, Benedikt Wirth, Martin Rumpf","doi":"10.1051/m2an/2023088","DOIUrl":"https://doi.org/10.1051/m2an/2023088","url":null,"abstract":"Autoencoders are widely used in machine learning for dimension reduction of high-dimensional data. The encoder embeds the input data manifold into a lower-dimensional latent space, while the decoder represents the inverse map, providing a parametrization of the data manifold by the manifold in latent space. We propose and analyze a novel regularization for learning the encoder component of an autoencoder: a loss functional that prefers isometric, extrinsically flat embeddings and allows to train the encoder on its own. To perform the training, it is assumed that the local Riemannian distance and the local Riemannian average can be evaluated for pairs of nearby points on the input manifold. The loss functional is computed via Monte Carlo integration. Our main theorem identifies a geometric loss functional of the embedding map as the $Gamma$-limit of the sampling-dependent loss functionals. Numerical tests, using image data that encodes different explicitly given data manifolds, show that smooth manifold embeddings into latent space are obtained. Due to the promotion of extrinsic flatness, interpolation between not too distant points on the manifold is well approximated by linear interpolation in latent space.","PeriodicalId":505020,"journal":{"name":"ESAIM: Mathematical Modelling and Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139266617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信