Aram Lyu, Seo Hee Nam, Ryan S Humphrey, Terzah M Horton, Lauren I R Ehrlich
{"title":"Cells and signals of the leukemic microenvironment that support progression of T-cell acute lymphoblastic leukemia (T-ALL).","authors":"Aram Lyu, Seo Hee Nam, Ryan S Humphrey, Terzah M Horton, Lauren I R Ehrlich","doi":"10.1038/s12276-024-01335-7","DOIUrl":"https://doi.org/10.1038/s12276-024-01335-7","url":null,"abstract":"<p><p>Current intensified chemotherapy regimens have significantly increased survival rates for pediatric patients with T-cell acute lymphoblastic leukemia (T-ALL), but these treatments can result in serious adverse effects; furthermore, patients who are resistant to chemotherapy or who relapse have inferior outcomes, together highlighting the need for improved therapeutic strategies. Despite recent advances in stratifying T-ALL into molecular subtypes with distinct driver mutations, efforts to target the tumor-intrinsic genomic alterations critical for T-ALL progression have yet to translate into more effective and less toxic therapies. Ample evidence now indicates that extrinsic factors in the leukemic microenvironment are critical for T-ALL growth, infiltration, and therapeutic resistance. Considering the diversity of organs infiltrated by T-ALL cells and the unique cellular components of the microenvironment encountered at each site, it is likely that there are both shared features of tumor-supportive niches across multiple organs and site-specific features that are key to leukemia cell survival. Therefore, elucidating the distinct microenvironmental cues supporting T-ALL in different anatomic locations could reveal novel therapeutic targets to improve therapies. This review summarizes the current understanding of the intricate interplay between leukemia cells and the diverse cells they encounter within their tumor microenvironments (TMEs), as well as opportunities to therapeutically target the leukemic microenvironment.</p>","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":9.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kyong-Ah Yoon, Youngwook Kim, So-Youn Jung, Jin-Sun Ryu, Kyung-Hee Kim, Eun-Gyeong Lee, Heejung Chae, Youngmee Kwon, Jaegil Kim, Jong Bae Park, Sun-Young Kong
{"title":"Proteogenomic analysis dissects early-onset breast cancer patients with prognostic relevance.","authors":"Kyong-Ah Yoon, Youngwook Kim, So-Youn Jung, Jin-Sun Ryu, Kyung-Hee Kim, Eun-Gyeong Lee, Heejung Chae, Youngmee Kwon, Jaegil Kim, Jong Bae Park, Sun-Young Kong","doi":"10.1038/s12276-024-01332-w","DOIUrl":"https://doi.org/10.1038/s12276-024-01332-w","url":null,"abstract":"<p><p>Early-onset breast cancer is known for its aggressive clinical characteristics and high prevalence in East Asian countries, but a comprehensive understanding of its molecular features is still lacking. In this study, we conducted a proteogenomic analysis of 126 treatment-naïve primary tumor tissues obtained from Korean patients with young breast cancer (YBC) aged ≤40 years. By integrating genomic, transcriptomic, and proteomic data, we identified five distinct functional subgroups that accurately represented the clinical characteristics and biological behaviors of patients with YBC. Our integrated approach could be used to determine the proteogenomic status of HER2, enhancing its clinical significance and prognostic value. Furthermore, we present a proteome-based homologous recombination deficiency (HRD) analysis that has the potential to overcome the limitations of conventional genomic HRD tests, facilitating the identification of new patient groups requiring targeted HR deficiency treatments. Additionally, we demonstrated that protein-RNA correlations can be used to predict the late recurrence of hormone receptor-positive breast cancer. Within each molecular subtype of breast cancer, we identified functionally significant protein groups whose differential abundance was closely correlated with the clinical progression of breast cancer. Furthermore, we derived a recurrence predictive index capable of predicting late recurrence, specifically in luminal subtypes, which plays a crucial role in guiding decisions on treatment durations for YBC patients. These findings improve the stratification and clinical implications for patients with YBC by contributing to the optimal adjuvant treatment and duration for favorable clinical outcomes.</p>","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":9.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interplay between membranes and biomolecular condensates in the regulation of membrane-associated cellular processes.","authors":"Nari Kim, Hyeri Yun, Hojin Lee, Joo-Yeon Yoo","doi":"10.1038/s12276-024-01337-5","DOIUrl":"https://doi.org/10.1038/s12276-024-01337-5","url":null,"abstract":"<p><p>Liquid‒liquid phase separation (LLPS) has emerged as a key mechanism for organizing cellular spaces independent of membranes. Biomolecular condensates, which assemble through LLPS, exhibit distinctive liquid droplet-like behavior and can exchange constituents with their surroundings. The regulation of condensate phases, including transitions from a liquid state to gel or irreversible aggregates, is important for their physiological functions and for controlling pathological progression, as observed in neurodegenerative diseases and cancer. While early studies on biomolecular condensates focused primarily on those in fluidic environments such as the cytosol, recent discoveries have revealed their existence in close proximity to, on, or even comprising membranes. The aim of this review is to provide an overview of the properties of membrane-associated condensates in a cellular context and their biological functions in relation to membranes.</p>","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":9.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sanghun Kim, Seul Gi Park, Jieun Kim, Seongho Hong, Sang-Mi Cho, Soo-Yeon Lim, Eun-Kyoung Kim, Sungjin Ju, Su Bin Lee, Sol Pin Kim, Tae Young Jeong, Yeji Oh, Seunghun Han, Hae-Rim Kim, Taek Chang Lee, Hyoung-Chin Kim, Won Kee Yoon, Tae Hyeon An, Kyoung-Jin Oh, Ki-Hoan Nam, Seonghyun Lee, Kyoungmi Kim, Je Kyung Seong, Hyunji Lee
{"title":"Comprehensive phenotypic assessment of nonsense mutations in mitochondrial ND5 in mice.","authors":"Sanghun Kim, Seul Gi Park, Jieun Kim, Seongho Hong, Sang-Mi Cho, Soo-Yeon Lim, Eun-Kyoung Kim, Sungjin Ju, Su Bin Lee, Sol Pin Kim, Tae Young Jeong, Yeji Oh, Seunghun Han, Hae-Rim Kim, Taek Chang Lee, Hyoung-Chin Kim, Won Kee Yoon, Tae Hyeon An, Kyoung-Jin Oh, Ki-Hoan Nam, Seonghyun Lee, Kyoungmi Kim, Je Kyung Seong, Hyunji Lee","doi":"10.1038/s12276-024-01333-9","DOIUrl":"https://doi.org/10.1038/s12276-024-01333-9","url":null,"abstract":"<p><p>Mitochondrial dysfunction induced by mitochondrial DNA (mtDNA) mutations has been implicated in various human diseases. A comprehensive analysis of mitochondrial genetic disorders requires suitable animal models for human disease studies. While gene knockout via premature stop codons is a powerful method for investigating the unique functions of target genes, achieving knockout of mtDNA has been rare. Here, we report the genotypes and phenotypes of heteroplasmic MT-ND5 gene-knockout mice. These mutant mice presented damaged mitochondrial cristae in the cerebral cortex, hippocampal atrophy, and asymmetry, leading to learning and memory abnormalities. Moreover, mutant mice are susceptible to obesity and thermogenetic disorders. We propose that these mtDNA gene-knockdown mice could serve as valuable animal models for studying the MT-ND5 gene and developing therapies for human mitochondrial disorders in the future.</p>","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":9.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinsei Jung, Sun Young Joo, Hyehyun Min, Jae Won Roh, Kyung Ah Kim, Ji-Hyun Ma, John Hoon Rim, Jung Ah Kim, Se Jin Kim, Seung Hyun Jang, Young Ik Koh, Hye-Youn Kim, Ho Lee, Byoung Choul Kim, Heon Yung Gee, Jinwoong Bok, Jae Young Choi, Je Kyung Seong
{"title":"MYH1 deficiency disrupts outer hair cell electromotility, resulting in hearing loss.","authors":"Jinsei Jung, Sun Young Joo, Hyehyun Min, Jae Won Roh, Kyung Ah Kim, Ji-Hyun Ma, John Hoon Rim, Jung Ah Kim, Se Jin Kim, Seung Hyun Jang, Young Ik Koh, Hye-Youn Kim, Ho Lee, Byoung Choul Kim, Heon Yung Gee, Jinwoong Bok, Jae Young Choi, Je Kyung Seong","doi":"10.1038/s12276-024-01338-4","DOIUrl":"https://doi.org/10.1038/s12276-024-01338-4","url":null,"abstract":"<p><p>Myh1 is a mouse deafness gene with an unknown function in the auditory system. Hearing loss in Myh1-knockout mice is characterized by an elevated threshold for the auditory brainstem response and the absence of a threshold for distortion product otoacoustic emission. Here, we investigated the role of MYH1 in outer hair cells (OHCs), crucial structures in the organ of Corti responsible for regulating cochlear amplification. Direct whole-cell voltage-clamp recordings of OHCs revealed that prestin activity was lower in Myh1-knockout mice than in wild-type mice, indicating abnormal OHC electromotility. We analyzed whole-exome sequencing data from 437 patients with hearing loss of unknown genetic causes and identified biallelic missense variants of MYH1 in five unrelated families. Hearing loss in individuals harboring biallelic MYH1 variants was non-progressive, with an onset ranging from congenital to childhood. Three of five individuals with MYH1 variants displayed osteopenia. Structural prediction by AlphaFold2 followed by molecular dynamic simulations revealed that the identified variants presented structural abnormalities compared with wild-type MYH1. In a heterogeneous overexpression system, MYH1 variants, particularly those in the head domain, abolished MYH1 functions, such as by increasing prestin activity and modulating the membrane traction force. Overall, our findings suggest an essential function of MYH1 in OHCs, as observed in Myh1-deficient mice, and provide genetic evidence linking biallelic MYH1 variants to autosomal recessive hearing loss in humans.</p>","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":9.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eun Jin Go, Sung-Min Hwang, Hyunjung Jo, Md Mahbubur Rahman, Jaeik Park, Ji Yeon Lee, Youn Yi Jo, Byung-Gil Lee, YunJae Jung, Temugin Berta, Yong Ho Kim, Chul-Kyu Park
{"title":"GLP-1 and its derived peptides mediate pain relief through direct TRPV1 inhibition without affecting thermoregulation.","authors":"Eun Jin Go, Sung-Min Hwang, Hyunjung Jo, Md Mahbubur Rahman, Jaeik Park, Ji Yeon Lee, Youn Yi Jo, Byung-Gil Lee, YunJae Jung, Temugin Berta, Yong Ho Kim, Chul-Kyu Park","doi":"10.1038/s12276-024-01342-8","DOIUrl":"10.1038/s12276-024-01342-8","url":null,"abstract":"<p><p>Hormonal regulation during food ingestion and its association with pain prompted the investigation of the impact of glucagon-like peptide-1 (GLP-1) on transient receptor potential vanilloid 1 (TRPV1). Both endogenous and synthetic GLP-1, as well as a GLP-1R antagonist, exendin 9-39, reduced heat sensitivity in naïve mice. GLP-1-derived peptides (liraglutide, exendin-4, and exendin 9-39) effectively inhibited capsaicin (CAP)-induced currents and calcium responses in cultured sensory neurons and TRPV1-expressing cell lines. Notably, exendin 9-39 alleviated CAP-induced acute pain, as well as chronic pain induced by complete Freund's adjuvant (CFA) and spared nerve injury (SNI), in mice without causing hyperthermia associated with other TRPV1 inhibitors. Electrophysiological analyses revealed that exendin 9-39 binds to the extracellular side of TRPV1, functioning as a noncompetitive inhibitor of CAP. Exendin 9-39 did not affect proton-induced TRPV1 activation, suggesting its selective antagonism. Among the exendin 9-39 fragments, exendin 20-29 specifically binds to TRPV1, alleviating pain in both acute and chronic pain models without interfering with GLP-1R function. Our study revealed a novel role for GLP-1 and its derivatives in pain relief, suggesting exendin 20-29 as a promising therapeutic candidate.</p>","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":9.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yun-Jeong Kim, Byunghee Kang, Solbi Kweon, Sejin Oh, Dayeon Kim, Dayeon Gil, Hyeonji Lee, Jung-Hyun Kim, Ji Hyeon Ju, Tae-Young Roh, Chang Pyo Hong, Hyuk-Jin Cha
{"title":"Longitudinal analysis of genetic and epigenetic changes in human pluripotent stem cells in the landscape of culture-induced abnormality.","authors":"Yun-Jeong Kim, Byunghee Kang, Solbi Kweon, Sejin Oh, Dayeon Kim, Dayeon Gil, Hyeonji Lee, Jung-Hyun Kim, Ji Hyeon Ju, Tae-Young Roh, Chang Pyo Hong, Hyuk-Jin Cha","doi":"10.1038/s12276-024-01334-8","DOIUrl":"https://doi.org/10.1038/s12276-024-01334-8","url":null,"abstract":"<p><p>Human embryonic stem cells (hESCs) are naturally equipped to maintain genome integrity to minimize genetic mutations during early embryo development. However, genetic aberration risks and subsequent cellular changes in hESCs during in vitro culture pose a significant threat to stem cell therapy. While a few studies have reported specific somatic mutations and copy number variations (CNVs), the molecular mechanisms underlying the acquisition of 'culture-adapted phenotypes' by hESCs are largely unknown. Therefore, we conducted comprehensive genomic, single-cell transcriptomic, and single-cell ATAC-seq analyses of an isogenic hESC model displaying definitive 'culture-adapted phenotypes'. We found that hESCs lacking TP53, in which loss-of-function mutations were identified in human pluripotent stem cells (hPSCs), presented a surge in somatic mutations. Notably, hPSCs with a copy number gain of 20q11.21 during early passage did not present 'culture-adapted phenotypes' or BCL2L1 induction. Single-cell RNA-seq and ATAC-seq analyses revealed active transcriptional regulation at the 20q11.21 locus. Furthermore, the induction of BCL2L1 and TPX2 to trigger 'culture-adapted phenotypes' was associated with epigenetic changes facilitating TEA domain (TEAD) binding. These results suggest that 20q11.21 copy number gain and additional epigenetic changes are necessary for expressing 'culture-adapted phenotypes' by activating gene transcription at this specific locus.</p>","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":9.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"VISTA-mediated immune evasion in cancer.","authors":"Raymond J Zhang, Tae Kon Kim","doi":"10.1038/s12276-024-01336-6","DOIUrl":"https://doi.org/10.1038/s12276-024-01336-6","url":null,"abstract":"<p><p>Over the past decade, V-domain immunoglobulin suppressor of T-cell activation (VISTA) has been established as a negative immune checkpoint molecule. Since the role of VISTA in inhibiting T-cell activation was described, studies have demonstrated other diverse regulatory functions in multiple immune cell populations. Furthermore, its relevance has been identified in human cancers. The role of VISTA in cancer immune evasion has been determined, but its mechanisms in the tumor microenvironment remain to be further elucidated. Understanding its contributions to cancer initiation, progression, and resistance to current treatments will be critical to its utility as a target for novel immunotherapies. Here, we summarize the current understanding of VISTA biology in cancer.</p>","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":9.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Su Jeong Lee, Ju Ang Kim, Hye Jung Ihn, Je-Yong Choi, Tae-Yub Kwon, Hong-In Shin, Eui-Sic Cho, Yong Chul Bae, Rulang Jiang, Jung-Eun Kim, Eui Kyun Park
{"title":"The transcription factor BBX regulates phosphate homeostasis through the modulation of FGF23.","authors":"Su Jeong Lee, Ju Ang Kim, Hye Jung Ihn, Je-Yong Choi, Tae-Yub Kwon, Hong-In Shin, Eui-Sic Cho, Yong Chul Bae, Rulang Jiang, Jung-Eun Kim, Eui Kyun Park","doi":"10.1038/s12276-024-01341-9","DOIUrl":"https://doi.org/10.1038/s12276-024-01341-9","url":null,"abstract":"<p><p>Fibroblast growth factor 23 (FGF23) plays an important role in phosphate homeostasis, and increased FGF23 levels result in hypophosphatemia; however, the molecular mechanism underlying increased FGF23 expression has not been fully elucidated. In this study, we found that mice lacking the bobby sox homolog (Bbx<sup>-/-</sup>) presented increased FGF23 expression and low phosphate levels in the serum and skeletal abnormalities such as a low bone mineral density (BMD) and bone volume (BV), as well as short and weak bones associated with low bone formation. Osteocyte-specific deletion of Bbx using Dmp-1-Cre resulted in similar skeletal abnormalities, elevated serum FGF23 levels, and reduced serum phosphate levels. In Bbx<sup>-/-</sup> mice, the expression of sodium phosphate cotransporter 2a (Npt2a) and Npt2c in the kidney and Npt2b in the small intestine, which are negatively regulated by FGF23, was downregulated, leading to phosphate excretion/wasting and malabsorption. An in vitro Fgf23 promoter analysis revealed that 1,25-dihydroxyvitamin D<sub>3</sub> (1,25(OH)<sub>2</sub>D<sub>3</sub>)-induced transactivation of the Fgf23 promoter was significantly inhibited by BBX overexpression, whereas it was increased following Bbx knockdown. Interestingly, 1,25(OH)<sub>2</sub>D<sub>3</sub> induced an interaction of the 1,25(OH)<sub>2</sub>D<sub>3</sub> receptor (VDR) with BBX and downregulated BBX protein levels. Cycloheximide (CHX) only partially downregulated BBX protein levels, indicating that 1,25(OH)<sub>2</sub>D<sub>3</sub> regulates BBX protein stability. Furthermore, the ubiquitination of BBX followed by proteasomal degradation was required for the increase in Fgf23 expression induced by 1,25(OH)<sub>2</sub>D<sub>3</sub>. Collectively, our data demonstrate that BBX negatively regulates Fgf23 expression, and consequently, the ubiquitin-dependent proteasomal degradation of BBX is required for FGF23 expression, thereby regulating phosphate homeostasis and bone development in mice.</p>","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":9.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tae-Su Han, Dae-Soo Kim, Mi-Young Son, Hyun-Soo Cho
{"title":"SMYD family in cancer: epigenetic regulation and molecular mechanisms of cancer proliferation, metastasis, and drug resistance.","authors":"Tae-Su Han, Dae-Soo Kim, Mi-Young Son, Hyun-Soo Cho","doi":"10.1038/s12276-024-01326-8","DOIUrl":"https://doi.org/10.1038/s12276-024-01326-8","url":null,"abstract":"<p><p>Epigenetic modifiers (miRNAs, histone methyltransferases (HMTs)/demethylases, and DNA methyltransferases/demethylases) are associated with cancer proliferation, metastasis, angiogenesis, and drug resistance. Among these modifiers, HMTs are frequently overexpressed in various cancers, and recent studies have increasingly identified these proteins as potential therapeutic targets. In this review, we discuss members of the SET and MYND domain-containing protein (SMYD) family that are topics of extensive research on the histone methylation and nonhistone methylation of cancer-related genes. Various members of the SMYD family play significant roles in cancer proliferation, metastasis, and drug resistance by regulating cancer-specific histone methylation and nonhistone methylation. Thus, the development of specific inhibitors that target SMYD family members may lead to the development of cancer treatments, and combination therapy with various anticancer therapeutic agents may increase treatment efficacy.</p>","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":9.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}