Intelligent Automation and Soft Computing最新文献

筛选
英文 中文
Dynamic Sliding Mode Backstepping Control for Vertical Magnetic Bearing System 垂直磁轴承系统的动态滑模反步控制
IF 2 4区 计算机科学
Intelligent Automation and Soft Computing Pub Date : 2022-01-01 DOI: 10.32604/iasc.2022.019555
W. Mao, Yu-Ying Chiu, Chao-Ting Chu, Binghuai Lin, Jian-Jie Hung
{"title":"Dynamic Sliding Mode Backstepping Control for Vertical Magnetic Bearing System","authors":"W. Mao, Yu-Ying Chiu, Chao-Ting Chu, Binghuai Lin, Jian-Jie Hung","doi":"10.32604/iasc.2022.019555","DOIUrl":"https://doi.org/10.32604/iasc.2022.019555","url":null,"abstract":"Electromagnets are commonly used as support for machine components and parts in magnetic bearing systems (MBSs). Compared with conventional mechanical bearings, the magnetic bearings have less noise, friction, and vibration, but the magnetic force has a highly nonlinear relationship with the control current and the air gap. This research presents a dynamic sliding mode backstepping control (DSMBC) designed to track the height position of modeless vertical MBS. Because MBS is nonlinear with model uncertainty, the design of estimator should be able to solve the lumped uncertainty. The proposed DSMBC controller can not only stabilize the nonlinear system under mismatched uncertainties, but also provide smooth control effort. The Lyapunov stability criterion and adaptive laws are derived to guarantee the convergence. The adaptive scheme that may be used to adjust the parameter vector is obtained, so the asymptotic stability of the developed system can be guaranteed. The backstepping algorithm is used to design the control system, and the stability and robustness of the MBS system are evaluated. Two position trajectories are considered to evaluate the proposed method. The experimental results show that the DSMBC method can improve the root mean square error (RMSE) by 29.94% compared with the traditional adaptive backstepping controller method under different position tracking conditions.","PeriodicalId":50357,"journal":{"name":"Intelligent Automation and Soft Computing","volume":"19 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74610495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Requirements Engineering: Conflict Detection Automation Using Machine Learning 需求工程:使用机器学习的冲突检测自动化
IF 2 4区 计算机科学
Intelligent Automation and Soft Computing Pub Date : 2022-01-01 DOI: 10.32604/iasc.2022.023750
Hatim M. Elhassan, Mohammed Abaker, Abdelzahir Abdelmaboud, Mohammed Burhanur Rehman
{"title":"Requirements Engineering: Conflict Detection Automation Using Machine Learning","authors":"Hatim M. Elhassan, Mohammed Abaker, Abdelzahir Abdelmaboud, Mohammed Burhanur Rehman","doi":"10.32604/iasc.2022.023750","DOIUrl":"https://doi.org/10.32604/iasc.2022.023750","url":null,"abstract":"","PeriodicalId":50357,"journal":{"name":"Intelligent Automation and Soft Computing","volume":"80 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80032706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Heart Disease Diagnosis Using Electrocardiography (ECG) Signals 利用心电图信号诊断心脏病
IF 2 4区 计算机科学
Intelligent Automation and Soft Computing Pub Date : 2022-01-01 DOI: 10.32604/iasc.2022.017622
V. R. Vimal, P. Anandan, N. Kumaratharan
{"title":"Heart Disease Diagnosis Using Electrocardiography (ECG) Signals","authors":"V. R. Vimal, P. Anandan, N. Kumaratharan","doi":"10.32604/iasc.2022.017622","DOIUrl":"https://doi.org/10.32604/iasc.2022.017622","url":null,"abstract":"Electrocardiogram (ECG) monitoring models are commonly employed for diagnosing heart diseases. Since ECG signals are normally acquired for a longer time duration with high resolution, there is a need to compress the ECG signals for transmission and storage. So, a novel compression technique is essential in transmitting the signals to the telemedicine center to monitor and analyse the data. In addition, the protection of ECG signals poses a challenging issue, which encryption techniques can resolve. The existing Encryption-Then-Compression (ETC) models for multimedia data fail to properly maintain the tradeoff between compression performance and signal quality. In this view, this study presents a new ETC with a diagnosis model for ECG data, called the ETC-ECG model. The proposed model involves four major processes, namely, pre-processing, encryption, compression, and classification. Once the ECG data of the patient are gathered, Discrete Wavelet Transform (DWT) with a Thresholding mechanism is used for noise removal. In addition, the chaotic map-based encryption technique is applied to encrypt the data. Moreover, the Burrows-Wheeler Transform (BWT) approach is employed for the compression of the encrypted data. Finally, a Deep Neural Network (DNN) is applied to the decrypted data to diagnose heart disease. The detailed experimental analysis takes place to ensure the effective performance of the presented model to assure data security, compression, and classification performance for ECG data.","PeriodicalId":50357,"journal":{"name":"Intelligent Automation and Soft Computing","volume":"72 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80449577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intelligent Audio Signal Processing for Detecting Rainforest Species Using Deep Learning 基于深度学习的雨林物种探测智能音频信号处理
IF 2 4区 计算机科学
Intelligent Automation and Soft Computing Pub Date : 2022-01-01 DOI: 10.32604/iasc.2022.019811
Rakesh Kumar, Meenu Gupta, Shakeel Ahmed, Abdulaziz Alhumam, Tushar Aggarwal
{"title":"Intelligent Audio Signal Processing for Detecting Rainforest Species Using Deep Learning","authors":"Rakesh Kumar, Meenu Gupta, Shakeel Ahmed, Abdulaziz Alhumam, Tushar Aggarwal","doi":"10.32604/iasc.2022.019811","DOIUrl":"https://doi.org/10.32604/iasc.2022.019811","url":null,"abstract":"Hearing a species in a tropical rainforest is much easier than seeing them. If someone is in the forest, he might not be able to look around and see every type of bird and frog that are there but they can be heard. A forest ranger might know what to do in these situations and he/she might be an expert in recognizing the different type of insects and dangerous species that are out there in the forest but if a common person travels to a rain forest for an adventure, he might not even know how to recognize these species, let alone taking suitable action against them. In this work, a model is built that can take audio signal as input, perform intelligent signal processing for extracting features and patterns, and output which type of species is present in the audio signal. The model works end to end and can work on raw input and a pipeline is also created to perform all the preprocessing steps on the raw input. In this work, different types of neural network architectures based on Long Short Term Memory (LSTM) and Convolution Neural Network (CNN) are tested. Both are showing reliable performance, CNN shows an accuracy of 95.62% and Log Loss of 0.21 while LSTM shows an accuracy of 93.12% and Log Loss of 0.17. Based on these results, it is shown that CNN performs better than LSTM in terms of accuracy while LSTM performs better than CNN in terms of Log Loss. Further, both of these models are combined to achieve high accuracy and low Log Loss. A combination of both LSTM and CNN shows an accuracy of 97.12% and a Log Loss of 0.16.","PeriodicalId":50357,"journal":{"name":"Intelligent Automation and Soft Computing","volume":"29 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76647443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A Novel COVID-19 Prediction Model with Optimal Control Rates 一种具有最优控制率的新型COVID-19预测模型
IF 2 4区 计算机科学
Intelligent Automation and Soft Computing Pub Date : 2022-01-01 DOI: 10.32604/iasc.2022.020726
A. Ahmed, Yousef AbuHour, Ammar El-Hassan
{"title":"A Novel COVID-19 Prediction Model with Optimal Control Rates","authors":"A. Ahmed, Yousef AbuHour, Ammar El-Hassan","doi":"10.32604/iasc.2022.020726","DOIUrl":"https://doi.org/10.32604/iasc.2022.020726","url":null,"abstract":"The Corona (COVID-19) epidemic has triggered interest in many fields of technology, medicine, science, and politics. Most of the mathematical research in this area focused on analyzing the dynamics of the spread of the virus. In this article, after a review of some current methodologies, a non-linear system of differential equations is developed to model the spread of COVID-19. In order to consider a wide spectrum of scenarios, we propose a susceptible-exposedinfected-quarantined-recovered (SEIQRS)-model which was analyzed to determine threshold conditions for its stability, and the number of infected cases that is an infected person will transmit on a virus to, reproduction number R0 is calculated. It is established that the disease-free state is globally asymptotically stable when the reproduction number is less than unity and unstable if its value is more than one. The model is tested against real data taken from the Ministry of Health in Jordan covering three time periods between March and September 2020 wherein two infection peaks occurred in the country. Simulations show consistency and accurate spread predictions within the optimistic range and the proposed model is distinguished by its applicability to aspects including recurrent infections, asymptomatic carriers over several timespans as well as the aforementioned waves of infection. © 2022, Tech Science Press. All rights reserved.","PeriodicalId":50357,"journal":{"name":"Intelligent Automation and Soft Computing","volume":"1 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78125548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Mathematical Design Enhancing Medical Images Formulated by a Fractal Flame Operator 用分形火焰算子改进医学图像的数学设计
IF 2 4区 计算机科学
Intelligent Automation and Soft Computing Pub Date : 2022-01-01 DOI: 10.32604/iasc.2022.021954
Rabha W. Ibrahim, Husam Yahya, Arkan J. Mohammed, N. M. G. Al-Saidi, D. Baleanu
{"title":"Mathematical Design Enhancing Medical Images Formulated by a Fractal Flame Operator","authors":"Rabha W. Ibrahim, Husam Yahya, Arkan J. Mohammed, N. M. G. Al-Saidi, D. Baleanu","doi":"10.32604/iasc.2022.021954","DOIUrl":"https://doi.org/10.32604/iasc.2022.021954","url":null,"abstract":"The interest in using fractal theory and its applications has grown in the field of image processing. Image enhancement is one of the feature processing tools, which aims to improve the details of an image. The enhancement of digital pictures is a challenging task due to the unforeseeable variation in the quality of the captured images. In this study, we present a mathematical model using a local conformable differential operator (LCDO). The proposed model is formulated by the theory of cantor fractal to generalize the definition of LCDO. The main advantage of utilizing LCDO for image enhancement is its capability to enhance the low contrast intensities using the coefficient estimate of LCDO. The proposed image enhancement algorithm is tested against different images with different qualities to show that it is robust and can withstand dramatic variations in quality. The quantitative results of Brisque, and Piqe were 30.38 and 35.53 respectively. The comparative consequences indicate that the proposed image enhancement model realizes the best image quality assessments. Overall, this model significantly improves the details of the given datasets, and can potentially help the medical staff during the diagnosis process. A MATLAB programming instrument utilized for application and valuation of the image quality measures. A comparison with other image techniques is illustrated regarding the visual review.","PeriodicalId":50357,"journal":{"name":"Intelligent Automation and Soft Computing","volume":"52 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79237902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Employing a Fuzzy Approach for Monitoring Fish Pond Culture Environment 采用模糊法监测鱼塘养殖环境
IF 2 4区 计算机科学
Intelligent Automation and Soft Computing Pub Date : 2022-01-01 DOI: 10.32604/iasc.2022.019098
Wen-Tsai Sung, Sung-Jung Hsiao
{"title":"Employing a Fuzzy Approach for Monitoring Fish Pond Culture Environment","authors":"Wen-Tsai Sung, Sung-Jung Hsiao","doi":"10.32604/iasc.2022.019098","DOIUrl":"https://doi.org/10.32604/iasc.2022.019098","url":null,"abstract":"This study builds an automatic monitoring system for the fish pond culture environment. The purpose of this study is to reduce culture costs, including those resulting from labor costs and natural disasters, and make it easier for culturists to manage their fish ponds. With the proposed system, physical indicators of water quality are extracted by temperature, dissolved oxygen, and pH sensing modules; the heater, submerged motor pump, air pump, feeding trough, and LED illuminating lamp are controlled to improve the water quality and reduce labor. The wireless sensor network (WSN) is used as the signal transmission architecture between the sensor nodes, the control nodes, and the computer, where the human– machine interface is used for display, recording, and operation. In order to make the system more efficient and accurate, the fuzzy theory is used for fuzzy inference of the sensed signal, which enables the controlled load to be optimized and combined with the WSN so that the real-time information of the fishponds can be made available to culturists through mobile devices or remote platforms. The grid and storage battery are used as an uninterruptible power supply (UPS) to alternately power the sensors. The experimental results show that the fish pond culture environment can be accurately and stably monitored. The proposed monitoring system is constructed using a network of sensors, and it achieves precise judgment and real-time control. Based on the current situation, the system instantly turns on the hardware device to change the environment as needed.","PeriodicalId":50357,"journal":{"name":"Intelligent Automation and Soft Computing","volume":"98 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76147670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
An Innovative Approach for Water Distribution Systems 水分配系统的创新方法
IF 2 4区 计算机科学
Intelligent Automation and Soft Computing Pub Date : 2022-01-01 DOI: 10.32604/iasc.2022.022374
V. Ta, D. Truong, N. Nhan
{"title":"An Innovative Approach for Water Distribution Systems","authors":"V. Ta, D. Truong, N. Nhan","doi":"10.32604/iasc.2022.022374","DOIUrl":"https://doi.org/10.32604/iasc.2022.022374","url":null,"abstract":"","PeriodicalId":50357,"journal":{"name":"Intelligent Automation and Soft Computing","volume":"140 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86577986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Efficient HAPS Cross-Layer Design to Mitigate COVID-19 Consequences 高效HAPS跨层设计减轻COVID-19后果
IF 2 4区 计算机科学
Intelligent Automation and Soft Computing Pub Date : 2022-01-01 DOI: 10.32604/iasc.2022.019493
Sameer Alsharif, R. Saeed, Y. Albagory
{"title":"An Efficient HAPS Cross-Layer Design to Mitigate COVID-19 Consequences","authors":"Sameer Alsharif, R. Saeed, Y. Albagory","doi":"10.32604/iasc.2022.019493","DOIUrl":"https://doi.org/10.32604/iasc.2022.019493","url":null,"abstract":"This paper proposes a new cross-layer communication system for the provision of Internet services and applications to mitigate the negative impacts of COVID-19, due to which the massive online demands are affecting the current communication systems' infrastructures and capabilities. The system requirements and model are investigated where it utilizes high-altitude platform (HAP) for fast and efficient connectivity provision to bridge the communication infrastructure gap in the current pandemic. The HAP is linked to the main server or gateway station located on ground and can provide communication narrow beams towards isolated areas which suffer from poor terrestrial radio coverage or lack of communication infrastructure. The vital e-learning applications using Internet services provision from the proposed HAP system are described and modelled including system adaptation parameters such as the application and physical layers to control the data rates of different e-learning applications and the overall cell data rate. On the other hand, the provision of high-speed Internet services from the proposed system is supported by using adaptive antenna arrays onboard HAP which provides high-gain beams to achieve the required high-quality transmission data rates at the student premises and provides the capability of coverage cell area adaptation for load balancing. The concentric circular antenna arrays with tapered feeding are proposed in this adaptive antenna system to control the cell mainlobe gain and reduce the out-of-coverage radiation as well. In addition, the system feasibility has been proved in two coverage scenarios including single-beam and multibeam HAP communications.","PeriodicalId":50357,"journal":{"name":"Intelligent Automation and Soft Computing","volume":"37 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85934061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Optimized Compressive Sensing Based ECG Signal Compression and Reconstruction 基于优化压缩感知的心电信号压缩与重构
IF 2 4区 计算机科学
Intelligent Automation and Soft Computing Pub Date : 2022-01-01 DOI: 10.32604/iasc.2022.022860
Ishani Mishra, Sanjay Jain
{"title":"Optimized Compressive Sensing Based ECG Signal Compression and Reconstruction","authors":"Ishani Mishra, Sanjay Jain","doi":"10.32604/iasc.2022.022860","DOIUrl":"https://doi.org/10.32604/iasc.2022.022860","url":null,"abstract":"In wireless body sensor network (WBSN), the set of electrocardiograms (ECG) data which is collected from sensor nodes and transmitted to the server remotely supports the experts to monitor the health of a patient. However, due to the size of the ECG data, the performance of the signal compression and reconstruction is degraded. For efficient wireless transmission of ECG data, compressive sensing (CS) frame work plays significant role recently in WBSN. So, this work focuses to present CS for ECG signal compression and reconstruction. Although CS minimizes mean square error (MSE), compression rate and reconstruction probability of the CS is further to be improved. In this paper, we provide an efficient compressive sensing framework which strives to improve the reconstruction process, by adjusting the sensing matrix during the compression phase using the rain optimization algorithm (ROA). With the optimal sensing matrix, the compressed signal is reconstructed using Step Size optimized Sparsity Adaptive Matching Pursuit algorithm (SAMP). The results of this work demonstrate that the optimised CS framework achieves a higher compression rate and probability of reconstruction than the standard CS framework.","PeriodicalId":50357,"journal":{"name":"Intelligent Automation and Soft Computing","volume":"34 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81822226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信