Evgenia Plaka, Stephen P. Jones, Brett A. Bednarcyk, Evan J. Pineda, Richard Li, Marianna Maiaru
{"title":"VERIFICATION AND VALIDATION OF A RAPID DESIGN TOOL FOR THE ANALYSIS OF THE COMPOSITE Y-JOINT OF THE D8 DOUBLE-BUBBLE AIRCRAFT","authors":"Evgenia Plaka, Stephen P. Jones, Brett A. Bednarcyk, Evan J. Pineda, Richard Li, Marianna Maiaru","doi":"10.1615/intjmultcompeng.2023047801","DOIUrl":"https://doi.org/10.1615/intjmultcompeng.2023047801","url":null,"abstract":"Polymer composite joints are critical aerospace components for reinforcing lightweight structures and achieving high eco-efficiency transportation standards. Optimizing complex structural joints is an iterative process. Fast and reliable numerical approaches are needed to overcome the runtime limitations of high-fidelity finite element (FE) modeling. This work proposes a computationally efficient approach based on the design tool, HyperX. Verification against FE models and experimental validation are presented for the composite Y-joint in the D8 double-bubble fuselage. Results show that the failure load of the Y-joint is predicted within 10% of the experimental failure load recorded. Two parametric studies are performed to study the effects of the curvature of the joint (110-160 deg) and the skin thickness (16, 24, and 32 ply) in the failure load predictions using a stress-based failure criterion. The maximum failure load occurred for a Y-joint with 130 deg curvature. The 32-ply skin Y-joint was predicted to have the highest failure load. Results prove the applicability of rapid joint optimization analysis for faster, computationally efficient design.","PeriodicalId":50350,"journal":{"name":"International Journal for Multiscale Computational Engineering","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138542891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
luju Liang, Yi Pik Cheng, Changjie Xu, Gang Wei, Zhi Ding
{"title":"Microscopic mechanisms of particle size effect on 2D arching effect development and degradation in granular materials","authors":"luju Liang, Yi Pik Cheng, Changjie Xu, Gang Wei, Zhi Ding","doi":"10.1615/intjmultcompeng.2023049782","DOIUrl":"https://doi.org/10.1615/intjmultcompeng.2023049782","url":null,"abstract":"This study carries out a series of DEM numerical simulations to investigates the microscopic mechanisms of arching effect development and degradation in classical 2D trapdoor problem with different mean particle sizes. Both the macroscopic and microscopic behaviours of particles under the influence of arching effect are examined. The simulation results of the granular assembly above a displacement-controlled trapdoor are divided into three zones: a shield zone; an arch zone and a stable zone, according to the extent of particle vertical displacement for analysis. The impacts of the mean particle size relative to trapdoor width on various zones are carefully evaluated. Microscopic parameters, including the friction mobilisation index, the average coordination number, and the mean particle contact force, are found to be all influenced by the mean particle size and show different behaviours in the three zones. The average particle contact force within the arch zone shows the highest correlation to the evolution of arching effect in particle samples with different particle size. These findings not only provided new insights into the correlation between the particle scale mechanisms and the macroscopic arching effect but also highlight the mean particle size influence on the evolution of arching effect in granular materials.","PeriodicalId":50350,"journal":{"name":"International Journal for Multiscale Computational Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135009494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Sasikaladevi, S. Pradeepa, A. Revathi, S. Vimal, Ruben Gonzalez Crespo
{"title":"Diagnosis of kidney cyst, tumor and stone from CT scan images using feature fusion hypergraph convolutional neural network (F2HCN2)","authors":"N. Sasikaladevi, S. Pradeepa, A. Revathi, S. Vimal, Ruben Gonzalez Crespo","doi":"10.1615/intjmultcompeng.2023048245","DOIUrl":"https://doi.org/10.1615/intjmultcompeng.2023048245","url":null,"abstract":"","PeriodicalId":50350,"journal":{"name":"International Journal for Multiscale Computational Engineering","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67461801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analyzing the Performance of Hip Cement Spacers: A Study on Crack Behavior","authors":"Mankour Abdeljelil","doi":"10.1615/intjmultcompeng.2023048481","DOIUrl":"https://doi.org/10.1615/intjmultcompeng.2023048481","url":null,"abstract":"","PeriodicalId":50350,"journal":{"name":"International Journal for Multiscale Computational Engineering","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67462181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical analysis of suffusion behavior under cyclic loading with coupled CFD-DEM simulation","authors":"Tuo Wang, Pei Wang, Zhen-Yu Yin","doi":"10.1615/intjmultcompeng.2023049894","DOIUrl":"https://doi.org/10.1615/intjmultcompeng.2023049894","url":null,"abstract":"Cyclic loading has a significant effect on soil properties and seriously threatens geotechnical engineering. However, the influence of cyclic loading on the suffusion in gap-graded granular soils remains unclear up to now. In this study, systematical numerical simulations of suffusion in soil samples subjected to triaxial compression are performed with the coupled computational fluid dynamics (CFD) and discrete element method (DEM) approach, i.e., the coupled CFD-DEM. The method is able to simulate the suffusion process in gap-graded soils under cyclic loading and reveal the evolution of fluid fields. The suffusion of gap-graded soil sample is achieved by imposing a downward seepage flow. The results indicate that, cyclic loading induces greater erosion mass and fluid velocity during the suffusion process, as compared to simulations under fixed external forces. The erosion curve can be divided into two stages. In the first stage, the particle loss rate is high but it only lasts for a very short of time. Then, the particle loss rate slows down and enters the second stage. In this stage, compared to the non-vibration sample, the sample subjected to cyclic loading still has a large eroded mass, which persists until the end of the simulation. The sensitivity analysis indicates that the first stage of suffusion is more sensitive to an increase in vibration amplitude, whereas the second stage is more responsive to an increase in frequency.","PeriodicalId":50350,"journal":{"name":"International Journal for Multiscale Computational Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134889687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A one-way coupled approach for multiscale characterization of filling of dual-scale fibrous reinforcements considering air compressibility and dissolution in lumped fashion","authors":"I. Patiño, C. Vargas, A. Benavides","doi":"10.1615/intjmultcompeng.2023047249","DOIUrl":"https://doi.org/10.1615/intjmultcompeng.2023047249","url":null,"abstract":"","PeriodicalId":50350,"journal":{"name":"International Journal for Multiscale Computational Engineering","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67461203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Space-Time Topology Optimization of Tunable Microstructures","authors":"A. F. Keles, I. Temizer, M. Çakmakci","doi":"10.1615/intjmultcompeng.2023047719","DOIUrl":"https://doi.org/10.1615/intjmultcompeng.2023047719","url":null,"abstract":"","PeriodicalId":50350,"journal":{"name":"International Journal for Multiscale Computational Engineering","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67461484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analytical Model for Composite Transverse Strength based on Computational Micromechanics","authors":"Sagar P. Shah, M. Maiarù","doi":"10.1615/intjmultcompeng.2023048428","DOIUrl":"https://doi.org/10.1615/intjmultcompeng.2023048428","url":null,"abstract":"","PeriodicalId":50350,"journal":{"name":"International Journal for Multiscale Computational Engineering","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67461698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Asymptotic Electrostatic Model of an Array of Micro Mirrors","authors":"N. Trinh, M. Lenczner","doi":"10.1615/intjmultcompeng.2023040716","DOIUrl":"https://doi.org/10.1615/intjmultcompeng.2023040716","url":null,"abstract":"","PeriodicalId":50350,"journal":{"name":"International Journal for Multiscale Computational Engineering","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67461241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Data-Physics Driven Reduced Order Homogenization for Continuum Damage Mechanics at Multiple Scales","authors":"Yang Yu, J. Fish","doi":"10.1615/intjmultcompeng.2023049164","DOIUrl":"https://doi.org/10.1615/intjmultcompeng.2023049164","url":null,"abstract":"","PeriodicalId":50350,"journal":{"name":"International Journal for Multiscale Computational Engineering","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67462443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}