International Journal of Modern Physics C最新文献

筛选
英文 中文
DHONE: Density-based higher-order network embedding DHONE:基于密度的高阶网络嵌入
IF 1.9 4区 物理与天体物理
International Journal of Modern Physics C Pub Date : 2024-04-08 DOI: 10.1142/s012918312450133x
Wei Guan, Qing Guan, Yueran Duan
{"title":"DHONE: Density-based higher-order network embedding","authors":"Wei Guan, Qing Guan, Yueran Duan","doi":"10.1142/s012918312450133x","DOIUrl":"https://doi.org/10.1142/s012918312450133x","url":null,"abstract":"<p>Studies have indicated that focusing solely on pairwise interactions between two nodes disregards the associativity among multi-nodes in the network’s local structure. This associativity can be seen as dependencies among nodes, where certain edges’ presence depends on the path leading to it. Examinations on diverse datasets have approved that the variable order of chained dependencies allows for the preservation of structure information, which enables the reconstruction of the original network into a Higher-Order Network (HON) with improved quality of network representation. This paper proposes a Density-based Higher-Order Network Embedding (DHONE) algorithm, which integrates the concept of higher-order density into the network-embedding process in order to classify the contribution of different orders of dependencies. Through the construction of a novel and effective higher-order adjacency matrix, DHONE steadily improves the accuracy of network representation learning. Experimental results demonstrate DHONEs proficiency in improving embedding accuracy and overall algorithm robustness. Furthermore, grounded in the concept of higher-order density proposed herein, numerous dependencies have been discerned within the network generated from trajectories, potentially indicating the role of multi-node structures in networks.</p>","PeriodicalId":50308,"journal":{"name":"International Journal of Modern Physics C","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140593199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The computational orthogonal shifted Legendre–Galerkin approach for handling fractional delay differential problems via adapting fractional M-derivative 通过调整分数 M 衍射处理分数延迟微分问题的计算正交移位 Legendre-Galerkin 方法
IF 1.9 4区 物理与天体物理
International Journal of Modern Physics C Pub Date : 2024-04-08 DOI: 10.1142/s0129183124501328
Hind Sweis, Omar Abu Arqub
{"title":"The computational orthogonal shifted Legendre–Galerkin approach for handling fractional delay differential problems via adapting fractional M-derivative","authors":"Hind Sweis, Omar Abu Arqub","doi":"10.1142/s0129183124501328","DOIUrl":"https://doi.org/10.1142/s0129183124501328","url":null,"abstract":"<p>This paper presents a numerical procedure for handling delay fractional differential problems where the derivative is defined using the <i>M</i>-fractional approach. The proposed scheme modus operandi is based on the shifted Legendre–Galerkin procedure, which is a powerful tool for solving complex differential models of generalized fractional derivatives. The method involves constructing a series of Legendre polynomials that form the basis functions for approximating the solution of the required problem. The coefficients of the series are obtained after solving an algebraic system of linear types that results from the application of the Galerkin practice. The numerical accuracy and convergence assessment are also presented together with various results. Simulations-based analyses are realized to validate the truthfulness and exactness of the process. The results manifest that the <i>M</i>-derivatives and the Galerkin practice provide alternative innovative approaches for handling <i>M</i>-delay fractional problems. Several keynotes and future recommendations are exhibited at the last with some selected references.</p>","PeriodicalId":50308,"journal":{"name":"International Journal of Modern Physics C","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140593447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aerodynamic performance of semi-wing with multiple winglets operating at low- and medium-range Reynolds numbers 在中低雷诺数下运行的带多个小翼的半机翼的空气动力性能
IF 1.9 4区 物理与天体物理
International Journal of Modern Physics C Pub Date : 2024-04-08 DOI: 10.1142/s0129183124501341
P. Sethunathan, K. K. Ramasamy, A. P. Sivasubramaniyam, R. Kannan
{"title":"Aerodynamic performance of semi-wing with multiple winglets operating at low- and medium-range Reynolds numbers","authors":"P. Sethunathan, K. K. Ramasamy, A. P. Sivasubramaniyam, R. Kannan","doi":"10.1142/s0129183124501341","DOIUrl":"https://doi.org/10.1142/s0129183124501341","url":null,"abstract":"<p>Birds have traits that can induce better aerodynamic efficiency along with high manoeuvring capability during its flight, which could be shared with unmanned aerial vehicles for improving their aerodynamic performances. One such feature of the wing tip, i.e. the primary feathers of the birds could be an effective geometrical feature to reduce the wing tip vortices. This paper presents the bio-inspired wing tip devices, i.e. three-and four-tipped multiple winglets in reducing the strength of vortices emanating from the wing tip of the wing operating in the Reynolds number (Re) of <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mn>0</mn><mo>.</mo><mn>9</mn><mn>7</mn><mn>9</mn><mn>4</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></math></span><span></span> and <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mn>0</mn><mo>.</mo><mn>9</mn><mn>7</mn><mn>9</mn><mn>4</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></math></span><span></span>. Different combinations of both three- and four-tipped multiple winglets have been designed by varying the cant angle of each tip. Numerical simulations were carried out using Ansys-Fluent by solving three-dimensional Reynolds averaged Navier–Stokes formulations coupled with <i>k</i>-<span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>ϵ</mi></math></span><span></span> turbulence model to resolve the features of tip vortices. The simulation clearly indicates that there is a strong correlation between the size of the vortices and the aerodynamic performance parameters such as <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>C</mi></mrow><mrow><mi>L</mi></mrow></msub><mo stretchy=\"false\">/</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>D</mi></mrow></msub></math></span><span></span>, <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mo stretchy=\"false\">(</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>L</mi></mrow></msub><mo stretchy=\"false\">)</mo></mrow><mrow><mo>max</mo><mo>,</mo></mrow></msub></math></span><span></span> <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>C</mi></mrow><mrow><mi>L</mi></mrow></msub><msup><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msup><mo stretchy=\"false\">/</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>D</mi></mrow></msub></math></span><span></span>, <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>C</mi></mrow><mrow><mi>L</mi></mrow></msub><msup><mrow></mrow><mrow><mn>1</mn><mo>.</mo><mn>5</mn></mrow></msup><mo stretchy=\"false\">/</mo><msub><mrow><mstyle><mtext mathvariant=\"normal\">C</mtext></mstyle></mrow><mrow><mi>D</mi></mrow></msub></math></span><span></span>. The three- and four-tipped multiple winglets are effective in reducing vortex drag by disintegrating large strength vortex which occurs in the tip of s","PeriodicalId":50308,"journal":{"name":"International Journal of Modern Physics C","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140593446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical investigation of heat transfer in wire and tube-based phase change material heat exchanger 线管式相变材料热交换器传热的数值研究
IF 1.9 4区 物理与天体物理
International Journal of Modern Physics C Pub Date : 2024-03-23 DOI: 10.1142/s0129183124501274
Devendra Dandotiya, Nitin. D. Banker, Anil Jaiswal, Naveen G. Patil
{"title":"Numerical investigation of heat transfer in wire and tube-based phase change material heat exchanger","authors":"Devendra Dandotiya, Nitin. D. Banker, Anil Jaiswal, Naveen G. Patil","doi":"10.1142/s0129183124501274","DOIUrl":"https://doi.org/10.1142/s0129183124501274","url":null,"abstract":"<p>The utilization of latent heat storage units with their high energy density and isothermal heat transfer behavior can enhance the performance of thermal energy systems. This study aims to investigate the effect of fin placement on the melting time of a wire and tube-based Phase Change Material (PCM) heat exchanger using numerical simulations. The study introduces a new complex geometry for the heat exchanger, and numerical analysis of heat transfer was conducted in Ansys Fluent software using an established solidification and melting model. The numerical results were validated against experimental data, and it was found that the position of the tubes and fins had a significant impact on heat transfer within the PCM. The model was able to predict temperature data with a maximum discrepancy of 3%.</p>","PeriodicalId":50308,"journal":{"name":"International Journal of Modern Physics C","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140298282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heuristic optimal transport in branching networks 分支网络中的启发式优化传输
IF 1.9 4区 物理与天体物理
International Journal of Modern Physics C Pub Date : 2024-03-12 DOI: 10.1142/s0129183124501201
M. Andrecut
{"title":"Heuristic optimal transport in branching networks","authors":"M. Andrecut","doi":"10.1142/s0129183124501201","DOIUrl":"https://doi.org/10.1142/s0129183124501201","url":null,"abstract":"<p>Optimal transport aims to learn a mapping of sources to targets by minimizing the cost, which is typically defined as a function of distance. The solution to this problem consists of straight line segments optimally connecting sources to targets, and it does not exhibit branching. These optimal solutions are in stark contrast with both natural, and man-made transportation networks, where branching structures are prevalent. Here, we discuss a fast heuristic branching method for optimal transport in networks. We also provide several numerical applications to synthetic examples, a simplified cardiovascular network, and the “Santa Claus” distribution network which includes 141<span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>182 cities around the world, with known location and population.</p>","PeriodicalId":50308,"journal":{"name":"International Journal of Modern Physics C","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140129800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parameter Estimation for Fractional-order Nonlinear Systems Based on Improved Sparrow Search Algorithm 基于改进的麻雀搜索算法的分数阶非线性系统参数估计
IF 1.9 4区 物理与天体物理
International Journal of Modern Physics C Pub Date : 2024-03-01 DOI: 10.1142/s0129183124501316
Yongqiang Zhou, Renhuan Yang, Yibin Chen, Qidong Huang, Chao Shen, Xiuzeng Yang, Ling Zhang, Mengyu Wei
{"title":"Parameter Estimation for Fractional-order Nonlinear Systems Based on Improved Sparrow Search Algorithm","authors":"Yongqiang Zhou, Renhuan Yang, Yibin Chen, Qidong Huang, Chao Shen, Xiuzeng Yang, Ling Zhang, Mengyu Wei","doi":"10.1142/s0129183124501316","DOIUrl":"https://doi.org/10.1142/s0129183124501316","url":null,"abstract":"","PeriodicalId":50308,"journal":{"name":"International Journal of Modern Physics C","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140084813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction of Industrial Electricity Consumption Based on Grey Cluster Weighted Markov Model 基于灰色簇加权马尔可夫模型的工业用电量预测
IF 1.9 4区 物理与天体物理
International Journal of Modern Physics C Pub Date : 2024-03-01 DOI: 10.1142/s0129183124501304
Huimin Chen, Xiaoyan Sun, Liqin Fu, Bokui Chen
{"title":"Prediction of Industrial Electricity Consumption Based on Grey Cluster Weighted Markov Model","authors":"Huimin Chen, Xiaoyan Sun, Liqin Fu, Bokui Chen","doi":"10.1142/s0129183124501304","DOIUrl":"https://doi.org/10.1142/s0129183124501304","url":null,"abstract":"","PeriodicalId":50308,"journal":{"name":"International Journal of Modern Physics C","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140088297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Entrainment and Mixing of Unsteady Gravity Currents in Compound Channels 复合水道中的非稳态重力流的夹带与混合
IF 1.9 4区 物理与天体物理
International Journal of Modern Physics C Pub Date : 2024-03-01 DOI: 10.1142/s0129183124501298
Elnaz Vahed, M. Khosravi, M. Javan
{"title":"Entrainment and Mixing of Unsteady Gravity Currents in Compound Channels","authors":"Elnaz Vahed, M. Khosravi, M. Javan","doi":"10.1142/s0129183124501298","DOIUrl":"https://doi.org/10.1142/s0129183124501298","url":null,"abstract":"","PeriodicalId":50308,"journal":{"name":"International Journal of Modern Physics C","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140083860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impacts of Molecular characteristics on induced Knudsen force in the micro gas sensor 分子特性对微型气体传感器中的诱导努森力的影响
IF 1.9 4区 物理与天体物理
International Journal of Modern Physics C Pub Date : 2024-03-01 DOI: 10.1142/s0129183124501286
Iman Shiryanpoor, P. Valipour, M. Barzegar Gerdroodbary, M. Shahbazi, A. Abazari
{"title":"Impacts of Molecular characteristics on induced Knudsen force in the micro gas sensor","authors":"Iman Shiryanpoor, P. Valipour, M. Barzegar Gerdroodbary, M. Shahbazi, A. Abazari","doi":"10.1142/s0129183124501286","DOIUrl":"https://doi.org/10.1142/s0129183124501286","url":null,"abstract":"","PeriodicalId":50308,"journal":{"name":"International Journal of Modern Physics C","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140086928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum wave representation of dissipative fluids 耗散流体的量子波表征
IF 1.9 4区 物理与天体物理
International Journal of Modern Physics C Pub Date : 2024-02-09 DOI: 10.1142/s0129183124501006
Luca Salasnich, Sauro Succi, Adriano Tiribocchi
{"title":"Quantum wave representation of dissipative fluids","authors":"Luca Salasnich, Sauro Succi, Adriano Tiribocchi","doi":"10.1142/s0129183124501006","DOIUrl":"https://doi.org/10.1142/s0129183124501006","url":null,"abstract":"<p>We present a mapping between a Schrödinger equation with a shifted nonlinear potential and the Navier–Stokes equation. Following a generalization of the Madelung transformations, we show that the inclusion of the Bohm quantum potential plus the laplacian of the phase field in the nonlinear term leads to continuity and momentum equations for a dissipative incompressible Navier–Stokes fluid. An alternative solution, built using a complex quantum diffusion, is also discussed. The present models may capture dissipative effects in quantum fluids, such as Bose–Einstein condensates, as well as facilitate the formulation of quantum algorithms for classical dissipative fluids.</p>","PeriodicalId":50308,"journal":{"name":"International Journal of Modern Physics C","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140128451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信