International Journal of Neural Systems最新文献

筛选
英文 中文
Epileptic Seizure Detection with an End-to-end Temporal Convolutional Network and Bidirectional Long Short-Term Memory Model 利用端到端时态卷积网络和双向长短期记忆模型检测癫痫发作
IF 8 2区 计算机科学
International Journal of Neural Systems Pub Date : 2023-12-15 DOI: 10.1142/s0129065724500126
Xingchen Dong, Yiming Wen, Dezan Ji, Shasha Yuan, Zhen Liu, Wei Shang, Weidong Zhou
{"title":"Epileptic Seizure Detection with an End-to-end Temporal Convolutional Network and Bidirectional Long Short-Term Memory Model","authors":"Xingchen Dong, Yiming Wen, Dezan Ji, Shasha Yuan, Zhen Liu, Wei Shang, Weidong Zhou","doi":"10.1142/s0129065724500126","DOIUrl":"https://doi.org/10.1142/s0129065724500126","url":null,"abstract":"","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":"19 23","pages":""},"PeriodicalIF":8.0,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138999931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A graph-based neural approach to linear sum assignment problems 用基于图的神经方法解决线性和分配问题
IF 8 2区 计算机科学
International Journal of Neural Systems Pub Date : 2023-12-08 DOI: 10.1142/s0129065724500114
Carlo Aironi, Samuele Cornell, Stefano Squartini
{"title":"A graph-based neural approach to linear sum assignment problems","authors":"Carlo Aironi, Samuele Cornell, Stefano Squartini","doi":"10.1142/s0129065724500114","DOIUrl":"https://doi.org/10.1142/s0129065724500114","url":null,"abstract":"","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":"429 ","pages":""},"PeriodicalIF":8.0,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139011252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automated Quality Evaluation of Large-Scale Benchmark Datasets for Vision-Language Tasks 自动评估视觉语言任务大型基准数据集的质量
IF 8 2区 计算机科学
International Journal of Neural Systems Pub Date : 2023-11-24 DOI: 10.1142/s0129065724500096
Ruibin Zhao, Zhiwei Xie, Yipeng Zhuang, P. L. Yu
{"title":"Automated Quality Evaluation of Large-Scale Benchmark Datasets for Vision-Language Tasks","authors":"Ruibin Zhao, Zhiwei Xie, Yipeng Zhuang, P. L. Yu","doi":"10.1142/s0129065724500096","DOIUrl":"https://doi.org/10.1142/s0129065724500096","url":null,"abstract":"","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":"2015 7","pages":""},"PeriodicalIF":8.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139239354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
sEMG-based Inter-Session Hand Gesture Recognition via Domain Adaptation with Locality Preserving and Maximum Margin 基于 sEMG 的会话间手势识别,通过具有位置保持和最大边际的域自适应实现
IF 8 2区 计算机科学
International Journal of Neural Systems Pub Date : 2023-11-24 DOI: 10.1142/s0129065724500102
Yao Guo, Jiayan Liu, Yonglin Wu, Xinyu Jiang, Yalin Wang, Long Meng, Xiangyu Liu, Feng Shu, Chenyun Dai, Wei Chen
{"title":"sEMG-based Inter-Session Hand Gesture Recognition via Domain Adaptation with Locality Preserving and Maximum Margin","authors":"Yao Guo, Jiayan Liu, Yonglin Wu, Xinyu Jiang, Yalin Wang, Long Meng, Xiangyu Liu, Feng Shu, Chenyun Dai, Wei Chen","doi":"10.1142/s0129065724500102","DOIUrl":"https://doi.org/10.1142/s0129065724500102","url":null,"abstract":"","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":"52 1","pages":""},"PeriodicalIF":8.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139241902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cultural Differences in the Assessment of Synthetic Voices 合成声音评估中的文化差异
IF 8 2区 计算机科学
International Journal of Neural Systems Pub Date : 2023-11-23 DOI: 10.1142/s0129065724500084
M. Cuciniello, T. Amorese, C. Greco, Zoraida Callejas Carrión, Carl Vogel, G. Cordasco, Anna Esposito
{"title":"Cultural Differences in the Assessment of Synthetic Voices","authors":"M. Cuciniello, T. Amorese, C. Greco, Zoraida Callejas Carrión, Carl Vogel, G. Cordasco, Anna Esposito","doi":"10.1142/s0129065724500084","DOIUrl":"https://doi.org/10.1142/s0129065724500084","url":null,"abstract":"","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":"12 1","pages":""},"PeriodicalIF":8.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139246231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alzheimer's Disease Evaluation through Visual Explainability by means of Convolutional Neural Networks 通过卷积神经网络的视觉可解释性评估阿尔茨海默病
IF 8 2区 计算机科学
International Journal of Neural Systems Pub Date : 2023-11-15 DOI: 10.1142/s0129065724500072
F. Mercaldo, Marcello Di Giammarco, Fabrizio Ravelli, Fabio Martinelli, A. Santone, M. Cesarelli
{"title":"Alzheimer's Disease Evaluation through Visual Explainability by means of Convolutional Neural Networks","authors":"F. Mercaldo, Marcello Di Giammarco, Fabrizio Ravelli, Fabio Martinelli, A. Santone, M. Cesarelli","doi":"10.1142/s0129065724500072","DOIUrl":"https://doi.org/10.1142/s0129065724500072","url":null,"abstract":"","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":"1 5","pages":""},"PeriodicalIF":8.0,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139272985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid Network for Patient-Specific Seizure Prediction from EEG Data. 从脑电图数据预测患者特定癫痫发作的混合网络
IF 8 2区 计算机科学
International Journal of Neural Systems Pub Date : 2023-11-01 DOI: 10.1142/S0129065723500569
Yongfeng Zhang, Tiantian Xiao, Ziwei Wang, Hongbin Lv, Shuai Wang, Hailing Feng, Shanshan Zhao, Yanna Zhao
{"title":"Hybrid Network for Patient-Specific Seizure Prediction from EEG Data.","authors":"Yongfeng Zhang,&nbsp;Tiantian Xiao,&nbsp;Ziwei Wang,&nbsp;Hongbin Lv,&nbsp;Shuai Wang,&nbsp;Hailing Feng,&nbsp;Shanshan Zhao,&nbsp;Yanna Zhao","doi":"10.1142/S0129065723500569","DOIUrl":"10.1142/S0129065723500569","url":null,"abstract":"<p><p>Seizure prediction can improve the quality of life for patients with drug-resistant epilepsy. With the rapid development of deep learning, lots of seizure prediction methods have been proposed. However, seizure prediction based on single convolution models is limited by the inherent defects of convolution itself. Convolution pays attention to the local features while underestimates the global features. The long-term dependence of the electroencephalogram (EEG) data cannot be captured. In view of these defects, a hybrid model called STCNN based on Swin transformer (ST) and 2D convolutional neural network (2DCNN) is proposed. Time-frequency features extracted by short-term Fourier transform (STFT) are taken as the input of STCNN. ST blocks are used in STCNN to capture the global information and long-term dependencies of EEGs. Meanwhile, the 2DCNN blocks are adopted to capture the local information and short-term dependent features. The combination of the two blocks can fully exploit the seizure-related information thus improve the prediction performance. Comprehensive experiments are performed on the CHB-MIT scalp EEG dataset. The average seizure prediction sensitivity, the area under the ROC curve (AUC) and the false positive rate (FPR) are 92.94%, 95.56% and 0.073, respectively.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":"1 1","pages":"2350056"},"PeriodicalIF":8.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46172061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epileptic Seizure Prediction Using Attention Augmented Convolutional Network. 使用注意力增强卷积网络预测癫痫发作。
IF 8 2区 计算机科学
International Journal of Neural Systems Pub Date : 2023-11-01 Epub Date: 2023-09-07 DOI: 10.1142/S0129065723500545
Dongsheng Liu, Xingchen Dong, Dong Bian, Weidong Zhou
{"title":"Epileptic Seizure Prediction Using Attention Augmented Convolutional Network.","authors":"Dongsheng Liu,&nbsp;Xingchen Dong,&nbsp;Dong Bian,&nbsp;Weidong Zhou","doi":"10.1142/S0129065723500545","DOIUrl":"10.1142/S0129065723500545","url":null,"abstract":"<p><p>Early seizure prediction is crucial for epilepsy patients to reduce accidental injuries and improve their quality of life. Identifying pre-ictal EEG from the inter-ictal state is particularly challenging due to their nonictal nature and remarkable similarities. In this study, a novel epileptic seizure prediction method is proposed based on multi-head attention (MHA) augmented convolutional neural network (CNN) to address the issue of CNN's limit of capturing global information of input signals. First, data enhancement is performed on original EEG recordings to balance the pre-ictal and inter-ictal EEG data, and the EEG recordings are sliced into 6-second-long EEG segments. Subsequently, EEG time-frequency distribution is obtained using Stockwell transform (ST), and the attention augmented convolutional network is employed for feature extraction and classification. Finally, post-processing is utilized to reduce the false prediction rate (FPR). The CHB-MIT EEG database was used to evaluate the system. The validation results showed a segment-based sensitivity of 98.24% and an event-based sensitivity of 94.78% with a FPR of 0.05/h were yielded, respectively. The satisfying results of the proposed method demonstrate its possible potential for clinical applications.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":" ","pages":"2350054"},"PeriodicalIF":8.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10161304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Localization of Epileptic Brain Responses to Single-Pulse Electrical Stimulation by Developing an Adaptive Iterative Linearly Constrained Minimum Variance Beamformer. 通过开发自适应迭代线性约束最小方差波束形成器定位癫痫脑对单脉冲电刺激的反应。
IF 8 2区 计算机科学
International Journal of Neural Systems Pub Date : 2023-10-01 Epub Date: 2023-08-09 DOI: 10.1142/S0129065723500508
Sepehr Shirani, Antonio Valentin, Bahman Abdi-Sargezeh, Gonzalo Alarcon, Saeid Sanei
{"title":"Localization of Epileptic Brain Responses to Single-Pulse Electrical Stimulation by Developing an Adaptive Iterative Linearly Constrained Minimum Variance Beamformer.","authors":"Sepehr Shirani,&nbsp;Antonio Valentin,&nbsp;Bahman Abdi-Sargezeh,&nbsp;Gonzalo Alarcon,&nbsp;Saeid Sanei","doi":"10.1142/S0129065723500508","DOIUrl":"10.1142/S0129065723500508","url":null,"abstract":"<p><p>Delayed responses (DRs) to single pulse electrical stimulation (SPES) in patients with severe refractory epilepsy, from their intracranial recordings, can help to identify regions associated with epileptogenicity. Automatic DR localization is a large step in speeding up the identification of epileptogenic focus. Here, for the first time, an adaptive iterative linearly constrained minimum variance beamformer (AI-LCMV) is developed and employed to localize the DR sources from intracranial electroencephalogram (EEG) recorded using subdural electrodes. The prime objective here is to accurately localize the regions for the corresponding DRs using an adaptive localization method that exploits the morphology of DRs as the desired sources. The traditional closed-form linearly constrained minimum variance (CF-LCMV) solution is meant for tracking the sources with dominating power. Here, by incorporating the morphology of DRs, as a constraint, to an iterative linearly constrained minimum variance (LCMV) solution, the array of subdural electrodes is used to localize the low-power DRs, some not even visible in any of the electrode signals. The results from the cases included in this study also indicate more distinctive locations compared to those achievable by conventional beamformers. Most importantly, the proposed AI-LCMV is able to localize the DRs invisible over other electrodes.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":" ","pages":"2350050"},"PeriodicalIF":8.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9979245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Enhancing Prediction of Forelimb Movement Trajectory through a Calibrating-Feedback Paradigm Incorporating RAT Primary Motor and Agranular Cortical Ensemble Activity in the Goal-Directed Reaching Task. 通过在目标定向达成任务中结合RAT初级运动和无核皮层集合活动的校准反馈范式来增强对前臂运动轨迹的预测。
IF 8 2区 计算机科学
International Journal of Neural Systems Pub Date : 2023-10-01 Epub Date: 2023-08-24 DOI: 10.1142/S012906572350051X
Han-Lin Wang, Yun-Ting Kuo, Yu-Chun Lo, Chao-Hung Kuo, Bo-Wei Chen, Ching-Fu Wang, Zu-Yu Wu, Chi-En Lee, Shih-Hung Yang, Sheng-Huang Lin, Po-Chuan Chen, You-Yin Chen
{"title":"Enhancing Prediction of Forelimb Movement Trajectory through a Calibrating-Feedback Paradigm Incorporating RAT Primary Motor and Agranular Cortical Ensemble Activity in the Goal-Directed Reaching Task.","authors":"Han-Lin Wang,&nbsp;Yun-Ting Kuo,&nbsp;Yu-Chun Lo,&nbsp;Chao-Hung Kuo,&nbsp;Bo-Wei Chen,&nbsp;Ching-Fu Wang,&nbsp;Zu-Yu Wu,&nbsp;Chi-En Lee,&nbsp;Shih-Hung Yang,&nbsp;Sheng-Huang Lin,&nbsp;Po-Chuan Chen,&nbsp;You-Yin Chen","doi":"10.1142/S012906572350051X","DOIUrl":"10.1142/S012906572350051X","url":null,"abstract":"<p><p>Complete reaching movements involve target sensing, motor planning, and arm movement execution, and this process requires the integration and communication of various brain regions. Previously, reaching movements have been decoded successfully from the motor cortex (M1) and applied to prosthetic control. However, most studies attempted to decode neural activities from a single brain region, resulting in reduced decoding accuracy during visually guided reaching motions. To enhance the decoding accuracy of visually guided forelimb reaching movements, we propose a parallel computing neural network using both M1 and medial agranular cortex (AGm) neural activities of rats to predict forelimb-reaching movements. The proposed network decodes M1 neural activities into the primary components of the forelimb movement and decodes AGm neural activities into internal feedforward information to calibrate the forelimb movement in a goal-reaching movement. We demonstrate that using AGm neural activity to calibrate M1 predicted forelimb movement can improve decoding performance significantly compared to neural decoders without calibration. We also show that the M1 and AGm neural activities contribute to controlling forelimb movement during goal-reaching movements, and we report an increase in the power of the local field potential (LFP) in beta and gamma bands over AGm in response to a change in the target distance, which may involve sensorimotor transformation and communication between the visual cortex and AGm when preparing for an upcoming reaching movement. The proposed parallel computing neural network with the internal feedback model improves prediction accuracy for goal-reaching movements.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":" ","pages":"2350051"},"PeriodicalIF":8.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10448794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信