{"title":"Investigation of wear behaviour of TiO2 and Al2O3 reinforced YSZ coating","authors":"Ali Avcı, M. Karabaş","doi":"10.55546/jmm.1468390","DOIUrl":"https://doi.org/10.55546/jmm.1468390","url":null,"abstract":"In this study, three different ceramic powders used as thermal barriers were coated on AISI304 stainless steel by the atmospheric plasma spray method. A pin-on-disc apparatus was utilised to investigate the wear characteristics of the coatings. The effect of wear behavior of the addition of Al2O3 and titanium dioxide (TiO2) into the YSZ coating was investigated. Before the wear test, sanding and polishing processes were carried out to ensure that the average surface roughness of the coatings was less than 0.8 µm. The wear test according to ASTM G99-04, was conducted on a pin-on-disc device at a speed of 143 rpm. The test was performed in a dry condition, with a minimum of 8000 cycles. The wear test utilised a 4N load and 6 mm-diameter Al2O3 balls. The surface properties and wear characteristics of the coatings were analysed using a scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS) after conducting coating and wear tests. The wear rate of the samples was assessed using optical profilometry. A micro Vickers test equipment was employed to assess the microhardness of the materials. The findings demonstrated that the inclusion of Al2O3 in YSZ led to an enhancement in wear resistance, but the incorporation of TiO2 resulted in a notable reduction in wear resistance.","PeriodicalId":502538,"journal":{"name":"Journal of Materials and Mechatronics: A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141388508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of high-temperature wear behavior of Ni-Mo alloyed hardfacing coatings applied on hot strip mill vertical rolls by submerged arc welding","authors":"Hikmet Gizem Sarsılmaz, A. Günen, E. Kanca","doi":"10.55546/jmm.1455324","DOIUrl":"https://doi.org/10.55546/jmm.1455324","url":null,"abstract":"In this study, hot strip mill vertical rolls made of AISI 4140 steel, commonly used in the iron and steel industry's hot rolling section, were coated with ER430 and E430+EC410NiMo using the submerged arc welding (SAW) method. The coatings were characterized through scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), microhardness, and wear testing (room 24 °C, 300 °C, and 600 °C). XRD analysis showed that in the ER430 sample, the dominant phase was α-ferrite phase and a small amount of γ (austenite) phase observed, while in the ER 430+EC410NiMo sample, the α-ferrite phase was the dominant phase, but the γ (austenite) phase in the structure was more severe and additionally M6C carbide phase was formed. Coating thicknesses and microhardness values of ER430 and ER430+EC410NiMo coatings were measured as 1.5 mm and 3.75 mm thicknesses, and 533±42 HV0.1 and 473±35 HV0.1 respectively. The increase in hardness on the surface of coated specimens resulted in higher wear resistance compared to the uncoated specimens under all conditions. Regarding average friction coefficient values, coated specimens generally exhibited lower values, although in some cases, the average friction coefficient was higher. In the wear tests, the lowest wear volume losses occurred in the tests conducted at 300°C, while the highest wear volume losses were observed in the tests at 600°C. Upon evaluating the wear mechanisms, it was determined that adhesive and oxidative wear mechanisms were generally dominant in the coated specimens. At higher temperatures, oxidative wear mechanisms became more prominent. ER430+EC410NiMo coatings exhibited better wear resistance compared to ER430, which can be attributed to the toughness effect of γ (austenite) and M6C phases in these coatings. Consequently, it was concluded that applying powder deposition coatings onto hot strip mill vertical rolls made of AISI 4140 steel could enhance their wear resistance, thereby increasing productivity in manufacturing processes.","PeriodicalId":502538,"journal":{"name":"Journal of Materials and Mechatronics: A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141012890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}