Journal of Computational and Applied Mathematics最新文献

筛选
英文 中文
Third order two-step Runge–Kutta–Chebyshev methods 三阶两步 Runge-Kutta-Chebyshev 方法
IF 2.1 2区 数学
Journal of Computational and Applied Mathematics Pub Date : 2024-09-26 DOI: 10.1016/j.cam.2024.116291
{"title":"Third order two-step Runge–Kutta–Chebyshev methods","authors":"","doi":"10.1016/j.cam.2024.116291","DOIUrl":"10.1016/j.cam.2024.116291","url":null,"abstract":"<div><div>The well-known high order stabilized codes (such as DUMKA and ROCK) have several drawbacks: numerically obtained stability polynomials (which do not have a closed analytic form), poor internal stability and convergence. RKC-type methods have much better computational properties. However, these types of methods currently have a second order maximum. In this paper, a family of third order stabilized methods with an explicit analytical solution of stability polynomials is presented. This was made possible by usage of two-step Runge–Kutta methods. A new code TSRKC3 is proposed, illustrated by several examples, and compared to existing programs.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142326350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finite difference methods for stochastic Helmholtz equation driven by white noise 白噪声驱动的随机亥姆霍兹方程的有限差分法
IF 2.1 2区 数学
Journal of Computational and Applied Mathematics Pub Date : 2024-09-20 DOI: 10.1016/j.cam.2024.116286
{"title":"Finite difference methods for stochastic Helmholtz equation driven by white noise","authors":"","doi":"10.1016/j.cam.2024.116286","DOIUrl":"10.1016/j.cam.2024.116286","url":null,"abstract":"<div><div>In this paper, we propose two numerical methods for the stochastic Helmholtz equation driven by white noise. We obtain the approximate stochastic problem by approximating the white noise with piecewise constant process, provide some regularity of its solution and the truncation error between the approximate stochastic problem and the original problem. The limitation on the wave number <span><math><mi>k</mi></math></span> of the finite difference method (FDM) is analyzed and a stochastic finite difference (SFD) scheme is presented. The error analysis shows that the stochastic finite difference method is efficient with a certain convergence rate. Numerical experiments are provided to examine our theoretical results.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Poisson noise removal based on non-convex hybrid regularizers 基于非凸混合正则的泊松噪声消除
IF 2.1 2区 数学
Journal of Computational and Applied Mathematics Pub Date : 2024-09-19 DOI: 10.1016/j.cam.2024.116289
{"title":"Poisson noise removal based on non-convex hybrid regularizers","authors":"","doi":"10.1016/j.cam.2024.116289","DOIUrl":"10.1016/j.cam.2024.116289","url":null,"abstract":"<div><div>The presence of TV regularizer always induces an unsatisfactory staircase effect. To overcome the staircase while better sustaining edge information, this work proposes a novel model for Poisson noise removal. The model is based on non-convex mixed regularizers, which involves introducing a non-convex penalty into a composition of the total variation and the higher-order total variation. The iterative reweighted <span><math><msub><mrow><mi>l</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> algorithm was used to convert the non-convex model into a convex one. The classic alternating direction method of multipliers was then employed to obtain approximate solutions of the model. When applying this model to degraded images contaminated by Poisson noise of medium to high intensity, its performance in noise suppression was tested. The regularizer was compared with others in the terms of the visual effect of the picture, time cost, and several commonly accepted quantitative indicators for evaluation, such as peak signal-to-noise ratio, feature similarity index and structural similarity index. Numerical experiments showed that the present model not only eliminates block artifacts but also retains sharp edges.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142326348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust H∞ control for LFC of discrete T–S fuzzy MAPS with DFIG and time-varying delays 带双馈变流器和时变延迟的离散 T-S 模糊 MAPS LFC 的鲁棒 H∞ 控制
IF 2.1 2区 数学
Journal of Computational and Applied Mathematics Pub Date : 2024-09-18 DOI: 10.1016/j.cam.2024.116271
{"title":"Robust H∞ control for LFC of discrete T–S fuzzy MAPS with DFIG and time-varying delays","authors":"","doi":"10.1016/j.cam.2024.116271","DOIUrl":"10.1016/j.cam.2024.116271","url":null,"abstract":"<div><div>The <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> LFC control problem for a class of nonlinear power systems with time-varying delays is under study. Considering uncertainties arising from nonlinear issues such as the generation rate constraint (GRC) and governor dead band (GDB), as well as the high variability of renewable energy sources like wind power, the model is transformed into a discrete-time Takagi–Sugeno (T–S) fuzzy model with parameter uncertainty. By constructing a Lyapunov–Krasovskii functional, and employing difference inequalities and generalized cross-convex matrix inequalities, sufficient conditions for the asymptotic stability of power systems are provided. Based on the obtained conditions, a controller is designed to ensure the asymptotic stability of Multi-Area Power Systems (MAPS), with the performance index being <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span>. Finally, simulation results demonstrate the correctness and effectiveness of the theorem.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fading regularization method for an inverse boundary value problem associated with the biharmonic equation 与双谐方程相关的反边界值问题的消隐正则化方法
IF 2.1 2区 数学
Journal of Computational and Applied Mathematics Pub Date : 2024-09-18 DOI: 10.1016/j.cam.2024.116285
{"title":"Fading regularization method for an inverse boundary value problem associated with the biharmonic equation","authors":"","doi":"10.1016/j.cam.2024.116285","DOIUrl":"10.1016/j.cam.2024.116285","url":null,"abstract":"<div><div>In this paper, we propose a numerical algorithm that combines the fading regularization method with the method of fundamental solutions (MFS) to solve a Cauchy problem associated with the biharmonic equation. We introduce a new stopping criterion for the iterative process and compare its performance with previous criteria. Numerical simulations using MFS validate the accuracy of this stopping criterion for both compatible and noisy data and demonstrate the convergence, stability, and efficiency of the proposed algorithm, as well as its ability to deblur noisy data.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Error analysis of the explicit-invariant energy quadratization (EIEQ) numerical scheme for solving the Allen–Cahn equation 用于求解艾伦-卡恩方程的显式不变能量四分法(EIEQ)数值方案的误差分析
IF 2.1 2区 数学
Journal of Computational and Applied Mathematics Pub Date : 2024-09-16 DOI: 10.1016/j.cam.2024.116224
{"title":"Error analysis of the explicit-invariant energy quadratization (EIEQ) numerical scheme for solving the Allen–Cahn equation","authors":"","doi":"10.1016/j.cam.2024.116224","DOIUrl":"10.1016/j.cam.2024.116224","url":null,"abstract":"<div><div>This paper focuses on the error analysis of a first-order, time-discrete scheme for solving the nonlinear Allen–Cahn equation. The discretization of the nonlinear potential is achieved through the EIEQ method, which employs an auxiliary variable to linearize the nonlinear double-well potential effectively. The energy stability of the scheme is demonstrated, along with its decoupled type implementation. Under a set of reasonable assumptions related to boundedness and continuity, an extensive error analysis is performed. This analysis results in the establishment of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> error bounds for the numerical solution. Furthermore, a variety of numerical examples are conducted to illustrate the accuracy of the EIEQ scheme, highlighting its effectiveness in addressing complex dynamical systems governed by the Allen–Cahn equation.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized Multiscale Finite Element Method for discrete network (graph) models 离散网络(图)模型的广义多尺度有限元法
IF 2.1 2区 数学
Journal of Computational and Applied Mathematics Pub Date : 2024-09-13 DOI: 10.1016/j.cam.2024.116275
{"title":"Generalized Multiscale Finite Element Method for discrete network (graph) models","authors":"","doi":"10.1016/j.cam.2024.116275","DOIUrl":"10.1016/j.cam.2024.116275","url":null,"abstract":"<div><p>In this paper, we consider a time-dependent discrete network model with highly varying connectivity. The approximation by time is performed using an implicit scheme. We propose the coarse scale approximation construction of network models based on the Generalized Multiscale Finite Element Method. An accurate coarse-scale approximation is generated by solving local spectral problems in sub-networks. Convergence analysis of the proposed method is presented for semi-discrete and discrete network models. We establish the stability of the multiscale discrete network. Numerical results are presented for structured and random heterogeneous networks.</p></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142241449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unconditional error analysis of the linearized transformed L1 virtual element method for nonlinear coupled time-fractional Schrödinger equations 非线性耦合时分数薛定谔方程线性化变换 L1 虚拟元素法的无条件误差分析
IF 2.1 2区 数学
Journal of Computational and Applied Mathematics Pub Date : 2024-09-13 DOI: 10.1016/j.cam.2024.116283
{"title":"Unconditional error analysis of the linearized transformed L1 virtual element method for nonlinear coupled time-fractional Schrödinger equations","authors":"","doi":"10.1016/j.cam.2024.116283","DOIUrl":"10.1016/j.cam.2024.116283","url":null,"abstract":"<div><div>This paper constructs a linearized transformed <span><math><mrow><mi>L</mi><mn>1</mn></mrow></math></span> virtual element method for the generalized nonlinear coupled time-fractional Schrödinger equations. The solutions to such problems typically exhibit singular behavior at the beginning. To avoid this pitfall, we introduce an identical <span><math><mi>s</mi></math></span>-fractional differential system derived from a smoothing transformation of variables <span><math><mrow><mi>t</mi><mo>=</mo><msup><mrow><mi>s</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>α</mi></mrow></msup></mrow></math></span>, <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>. By utilizing the discrete complementary convolution kernels, we prove the boundedness and error estimates of the solution of time-discrete system. Moreover, the unconditionally optimal error bounds of the proposed fully discrete scheme are derived in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm without restriction on the grid ratio. Finally, numerical tests on a set of polygonal meshes are presented to verify the theoretical results.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new space transformed finite element method for elliptic interface problems in Rn Rn 中椭圆界面问题的新空间变换有限元法
IF 2.1 2区 数学
Journal of Computational and Applied Mathematics Pub Date : 2024-09-12 DOI: 10.1016/j.cam.2024.116277
{"title":"A new space transformed finite element method for elliptic interface problems in Rn","authors":"","doi":"10.1016/j.cam.2024.116277","DOIUrl":"10.1016/j.cam.2024.116277","url":null,"abstract":"<div><p>Interface problems, where distinct materials or physical domains meet, pose significant challenges in numerical simulations due to the discontinuities and sharp gradients across interfaces. Traditional finite element methods struggle to capture such behavior accurately. A new space transformed finite element method (ST-FEM) is developed for solving elliptic interface problems in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. A homeomorphic stretching transformation is introduced to obtain an equivalent problem in the transformed domain which can be solved easily, and the solution can be projected back to original domain by the inverse transformation. Compared with the existing methods, this new scheme has capability of handling discontinuities across the interface. The proposed approach has advantages in circumventing interface approximation properties and reducing the degree of freedom. We initially develop ST-FEM for elliptic problems and subsequently expand upon this concept to address elliptic interface problems. We prove optimal a priori error estimates in the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norms, and quasi-optimal error estimate for the maximum norm. Finally, numerical experiments demonstrate the superior accuracy and convergence properties of the ST-FEM when compared to the standard finite element method. The interface is assumed to be a <span><math><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-sphere, nevertheless, our analysis can cover symmetric domains such as an ellipsoid or a cylinder.</p></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142241453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Representation computation for the hypergeometric function of a Hermitian matrix argument 赫米矩阵参数的超几何函数的表示计算
IF 2.1 2区 数学
Journal of Computational and Applied Mathematics Pub Date : 2024-09-12 DOI: 10.1016/j.cam.2024.116258
{"title":"Representation computation for the hypergeometric function of a Hermitian matrix argument","authors":"","doi":"10.1016/j.cam.2024.116258","DOIUrl":"10.1016/j.cam.2024.116258","url":null,"abstract":"<div><p>We establish the exact expressions for the hypergeometric function of a Hermitian matrix argument. This result allows for the eigenvalues of the matrix argument to occur with arbitrary multiplicities and can be used for numerical computation. These exact expressions are particularly important since they provide the key ingredient which allows many results which involve this function to be useful from a practical engineering perspective.</p></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142241451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信