{"title":"Error bounds for one-dimensional constrained Langevin approximations for nearly density-dependent Markov chains","authors":"Felipe A. Campos, Ruth J. Williams","doi":"10.1017/apr.2024.25","DOIUrl":"https://doi.org/10.1017/apr.2024.25","url":null,"abstract":"\u0000 Continuous-time Markov chains are frequently used to model the stochastic dynamics of (bio)chemical reaction networks. However, except in very special cases, they cannot be analyzed exactly. Additionally, simulation can be computationally intensive. An approach to address these challenges is to consider a more tractable diffusion approximation. Leite and Williams (Ann. Appl. Prob.29, 2019) proposed a reflected diffusion as an approximation for (bio)chemical reaction networks, which they called the constrained Langevin approximation (CLA) as it extends the usual Langevin approximation beyond the first time some chemical species becomes zero in number. Further explanation and examples of the CLA can be found in Anderson et al. (SIAM Multiscale Modeling Simul.17, 2019).\u0000 In this paper, we extend the approximation of Leite and Williams to (nearly) density-dependent Markov chains, as a first step to obtaining error estimates for the CLA when the diffusion state space is one-dimensional, and we provide a bound for the error in a strong approximation. We discuss some applications for chemical reaction networks and epidemic models, and illustrate these with examples. Our method of proof is designed to generalize to higher dimensions, provided there is a Lipschitz Skorokhod map defining the reflected diffusion process. The existence of such a Lipschitz map is an open problem in dimensions more than one.","PeriodicalId":502238,"journal":{"name":"Advances in Applied Probability","volume":"120 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141801834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On optimal reinsurance in the presence of premium budget constraint and reinsurer’s risk limit","authors":"Wei Liu, Yijun Hu","doi":"10.1017/apr.2024.2","DOIUrl":"https://doi.org/10.1017/apr.2024.2","url":null,"abstract":"\u0000 In this paper, we propose two new optimal reinsurance models in which both premium budget constraints and the reinsurer’s risk limits are taken into account. To be precise, we assume that the reinsurance premium has an upper bound, and that the admissible ceded loss functions have a pre-specified upper limit. Moreover, we assume that the reinsurance premium principle is calculated by the expected value premium principle. Under the optimality criteria of minimizing the value at risk and conditional value at risk of the insurer’s total risk exposure, we derive the explicit optimal reinsurance treaties, which are layer reinsurance treaties. A new approach is developed to construct the optimal reinsurance treaties. Comparisons with existing studies are also made. Finally, we provide a numerical study based on real data and an example to illustrate the proposed models and results. Our work provides a novel generalization of several known achievements in the literature.","PeriodicalId":502238,"journal":{"name":"Advances in Applied Probability","volume":"29 31","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140226547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Heavy-traffic queue length behavior in a switch under Markovian arrivals","authors":"Shancong Mou, S. T. Maguluri","doi":"10.1017/apr.2023.60","DOIUrl":"https://doi.org/10.1017/apr.2023.60","url":null,"abstract":"\u0000 This paper studies the input-queued switch operating under the MaxWeight algorithm when the arrivals are according to a Markovian process. We exactly characterize the heavy-traffic scaled mean sum queue length in the heavy-traffic limit, and show that it is within a factor of less than 2 from a universal lower bound. Moreover, we obtain lower and upper bounds that are applicable in all traffic regimes and become tight in the heavy-traffic regime.\u0000 We obtain these results by generalizing the drift method recently developed for the case of independent and identically distributed arrivals to the case of Markovian arrivals. We illustrate this generalization by first obtaining the heavy-traffic mean queue length and its distribution in a single-server queue under Markovian arrivals and then applying it to the case of an input-queued switch.\u0000 The key idea is to exploit the geometric mixing of finite-state Markov chains, and to work with a time horizon that is chosen so that the error due to mixing depends on the heavy-traffic parameter.","PeriodicalId":502238,"journal":{"name":"Advances in Applied Probability","volume":"115 37","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140088215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"APR volume 56 issue 1 Cover and Back matter","authors":"","doi":"10.1017/apr.2024.6","DOIUrl":"https://doi.org/10.1017/apr.2024.6","url":null,"abstract":"","PeriodicalId":502238,"journal":{"name":"Advances in Applied Probability","volume":"69 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139841607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"APR volume 56 issue 1 Cover and Front matter","authors":"","doi":"10.1017/apr.2024.5","DOIUrl":"https://doi.org/10.1017/apr.2024.5","url":null,"abstract":"","PeriodicalId":502238,"journal":{"name":"Advances in Applied Probability","volume":"121 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139780852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"APR volume 56 issue 1 Cover and Back matter","authors":"","doi":"10.1017/apr.2024.6","DOIUrl":"https://doi.org/10.1017/apr.2024.6","url":null,"abstract":"","PeriodicalId":502238,"journal":{"name":"Advances in Applied Probability","volume":"16 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139781763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"APR volume 56 issue 1 Cover and Front matter","authors":"","doi":"10.1017/apr.2024.5","DOIUrl":"https://doi.org/10.1017/apr.2024.5","url":null,"abstract":"","PeriodicalId":502238,"journal":{"name":"Advances in Applied Probability","volume":"97 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139840790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An asymptotic approach to centrally planned portfolio selection","authors":"Zongxia Liang, Yang Liu","doi":"10.1017/apr.2023.50","DOIUrl":"https://doi.org/10.1017/apr.2023.50","url":null,"abstract":"\u0000 We formulate a centrally planned portfolio selection problem with the investor and the manager having S-shaped utilities under a recently popular first-loss contract. We solve for the closed-form optimal portfolio, which shows that a first-loss contract can sometimes behave like an option contract. We propose an asymptotic approach to investigate the portfolio. This approach can be adopted to illustrate economic insights, including the fact that the portfolio under a convex contract becomes more conservative when the market state is better. Furthermore, we discover a means of Pareto improvement by simultaneously considering the investor’s utility and increasing the manager’s incentive rate. This is achieved by establishing the collection of Pareto points of a single contract, proving that it is a strictly decreasing and strictly concave frontier, and comparing the Pareto frontiers of different contracts. These results may be helpful for the illustration of risk choices and the design of Pareto-optimal contracts.","PeriodicalId":502238,"journal":{"name":"Advances in Applied Probability","volume":"341 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139852258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An asymptotic approach to centrally planned portfolio selection","authors":"Zongxia Liang, Yang Liu","doi":"10.1017/apr.2023.50","DOIUrl":"https://doi.org/10.1017/apr.2023.50","url":null,"abstract":"\u0000 We formulate a centrally planned portfolio selection problem with the investor and the manager having S-shaped utilities under a recently popular first-loss contract. We solve for the closed-form optimal portfolio, which shows that a first-loss contract can sometimes behave like an option contract. We propose an asymptotic approach to investigate the portfolio. This approach can be adopted to illustrate economic insights, including the fact that the portfolio under a convex contract becomes more conservative when the market state is better. Furthermore, we discover a means of Pareto improvement by simultaneously considering the investor’s utility and increasing the manager’s incentive rate. This is achieved by establishing the collection of Pareto points of a single contract, proving that it is a strictly decreasing and strictly concave frontier, and comparing the Pareto frontiers of different contracts. These results may be helpful for the illustration of risk choices and the design of Pareto-optimal contracts.","PeriodicalId":502238,"journal":{"name":"Advances in Applied Probability","volume":" 29","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139792530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Local weak limit of preferential attachment random trees with additive fitness","authors":"Tiffany Y. Y. Lo","doi":"10.1017/apr.2023.54","DOIUrl":"https://doi.org/10.1017/apr.2023.54","url":null,"abstract":"\u0000 We consider linear preferential attachment trees with additive fitness, where fitness is the random initial vertex attractiveness. We show that when the fitnesses are independent and identically distributed and have positive bounded support, the local weak limit can be constructed using a sequence of mixed Poisson point processes. We also provide a rate of convergence for the total variation distance between the r-neighbourhoods of a uniformly chosen vertex in the preferential attachment tree and the root vertex of the local weak limit. The proof uses a Pólya urn representation of the model, for which we give new estimates for the beta and product beta variables in its construction. As applications, we obtain limiting results and convergence rates for the degrees of the uniformly chosen vertex and its ancestors, where the latter are the vertices that are on the path between the uniformly chosen vertex and the initial vertex.","PeriodicalId":502238,"journal":{"name":"Advances in Applied Probability","volume":"66 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139613384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}