Duangthida Hussadintorn Na Ayutthaya, Pisut Koomsap
{"title":"Customer’s PIE for experiencescape design","authors":"Duangthida Hussadintorn Na Ayutthaya, Pisut Koomsap","doi":"10.1080/09544828.2023.2290917","DOIUrl":"https://doi.org/10.1080/09544828.2023.2290917","url":null,"abstract":"Since the evolution of the experience economy, businesses in all sectors have attempted to progress their offerings toward staging memorable experiences, enhancing the offerings’ value and sustaini...","PeriodicalId":50207,"journal":{"name":"Journal of Engineering Design","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138569167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brendan P. Sullivan, Elias Arias Nava, Monica Rossi, Sergio Terzi
{"title":"A systematic literature review of changeability in engineering systems along the life cycle","authors":"Brendan P. Sullivan, Elias Arias Nava, Monica Rossi, Sergio Terzi","doi":"10.1080/09544828.2023.2273248","DOIUrl":"https://doi.org/10.1080/09544828.2023.2273248","url":null,"abstract":"The escalating dynamism of external pressures and the persistent demand from stakeholders for systems to maintain value amidst continuous change necessitates a re-evaluation of how system value is delivered. This literature review addresses the ambiguously defined concept of changeability, which spans domains, incorporates various ‘ilities’ and has in part impeded the formulation of effective comprehensive industry strategies. As a successful approach to cope with change, changeability involves the design of engineering systems that can continue to change, quickly (agile) and easily (flexible). This paper elucidates how changeability is defined, and the elements used to evaluate change in engineering systems. Subsequently, it reviews the methods and strategies employed to quantify, measure, and analyse changeability and change-related ‘ilities’. An examination of various cases and applied research sets allowed the researchers to illustrate the roles, features and effects of changeability in the design of complex engineering systems throughout the entire lifecycle, thereby confirming and consolidating how changeability is both perceived and executed. Based on these findings, future research related to the quantification of changeability levels, and the cost implications associated are proposed, with an emphasis on utilising and integrating systems models (model-based systems engineering) to standardise and simplify implementation across various engineering systems.","PeriodicalId":50207,"journal":{"name":"Journal of Engineering Design","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135242756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tijana Vuletic, Chris McTeague, Gerard Campbell, Laura Hay, Madeleine Grealy
{"title":"Effects of activity time limitation on gesture elicitation for form creation","authors":"Tijana Vuletic, Chris McTeague, Gerard Campbell, Laura Hay, Madeleine Grealy","doi":"10.1080/09544828.2023.2271773","DOIUrl":"https://doi.org/10.1080/09544828.2023.2271773","url":null,"abstract":"Cognitive processing employed during design includes both time critical and time-consuming types of thinking. The ability to match the pace of design generation or modification with the designers thinking processes can be particularly important with gesture-based interfaces for form creation, especially where representation modes of input and response may influence the choice of activities performed. Particularly in gesture elicitation studies, time-consuming design activities can shift the focus on forming the analogies between problem at hand and prior knowledge and experiences, rather than intuitive gesture suggestions that would be the best fit for the given representation mode. However, design methodologies do not prescribe or discuss time limitations and their use in this context. In this paper, time limitation is explored during a gesture elicitation study for three-dimensional object creation, modification and manipulation, by comparing two study parts, one where time limitation was imposed and one where time was unlimited. Resulting gesture durations in both parts were comparable and elicited gestures were similar in nature and employing same elements of hand motion, supporting the hypothesis that time limitation can be a useful methodological approach when gestures are used for interaction with 3D objects and representation and interaction modalities are matched.","PeriodicalId":50207,"journal":{"name":"Journal of Engineering Design","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136381130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Novice engineer vs. machine: comparing artificial neural network predictions with student estimates of market price using function structure models","authors":"Apurva Patel, Joshua D. Summers","doi":"10.1080/09544828.2023.2271772","DOIUrl":"https://doi.org/10.1080/09544828.2023.2271772","url":null,"abstract":"AbstractThis paper investigates the use of Artificial Neural Networks (ANN) to model human behaviour in early-stage engineering design; specifically, by comparing the predictive capability of ANNs and engineering novices. The comparison is between ‘crowds' of ANNs and humans. Function structure models of fifteen products are used as input for prediction. Additionally, the type of information provided is varied between topology information and vocabulary information. Prediction accuracy is compared, with the results showing that ANN crowd performs comparably to the novice estimates. However, students are more precise with their predictions. Moreover, student confidence in predictions is analyzed, and results suggest that students have low to moderate confidence in their predictions. Confidence increased with the addition of vocabulary information. Finally, limitations and future work are discussed, with research questions presented for subsequent research. This work motivates future studies on crowds, both human and virtual and the cost-benefits associated with collective intelligence.KEYWORDS: Wisdom of the crowdANN Crowdfunction structuredeep learningmarket value prediction Disclosure statementNo potential conflict of interest was reported by the author(s).Notes1 https://design.engr.oregonstate.edu/repo.","PeriodicalId":50207,"journal":{"name":"Journal of Engineering Design","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136382110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Siiskonen, Rydvikha Govender, Johan Malmqvist, Staffan Folestad
{"title":"Modelling the cost-benefit impact of integrated product modularisation and postponement in the supply chain for pharmaceutical mass customisation","authors":"Maria Siiskonen, Rydvikha Govender, Johan Malmqvist, Staffan Folestad","doi":"10.1080/09544828.2023.2266330","DOIUrl":"https://doi.org/10.1080/09544828.2023.2266330","url":null,"abstract":"Realisation of pharmaceutical product and production systems capable of delivering product customisation cost-effectively is essential for adding value to patients and society through improved tailoring of therapies to individuals relative to current mass-produced products. To address the continued lack of evidence-based system solutions, this study presents a holistic design framework and a novel computational platform for enabling design explorations of integrated pharmaceutical product and supply chain (SC) reconfiguration. The design and modelling framework developed herein takes an end-to-end SC perspective, adapts the mass customisation strategies of product modularisation and postponement, and demonstrates case study simulations based on real-life therapy and SC archetypes. The cost-effectiveness assessment with the derived integrated systems computational platform confirm that product modularisation drives patient benefit through variety provision and that postponement drives cost reduction in an end-to-end SC. A novel insight is therefore that both product modularisation and postponement, in an integrated manner, are required for maximising cost-effective customisation. Moreover, the computational simulations, founded and modelled on real-life scenarios, provide design requirements for reconfigurable product and SC systems in a pharmaceutical context. In all, these findings are imperative for providing guidance on integrated pharmaceutical product and production systems design and mass customisation/ mass personalisation/mass individualisation realisation.","PeriodicalId":50207,"journal":{"name":"Journal of Engineering Design","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135315893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhiqiang Hu, Xinyu Li, Xinyu Pan, Sijie Wen, Jinsong Bao
{"title":"A question answering system for assembly process of wind turbines based on multi-modal knowledge graph and large language model","authors":"Zhiqiang Hu, Xinyu Li, Xinyu Pan, Sijie Wen, Jinsong Bao","doi":"10.1080/09544828.2023.2272555","DOIUrl":"https://doi.org/10.1080/09544828.2023.2272555","url":null,"abstract":"AbstractIn the field of wind power generation, wind turbines serve as the foundation for harnessing electrical energy. However, the assembly process information for wind turbines is typically dispersed among various modalities such as 3D models, natural text, and images in the form of process documents. The difficulty in effectively utilising historical process knowledge hampers the efficiency of assembly process design and subsequently affects production efficiency. To address this issue, this paper constructs a Multi-modal Process Knowledge Graph for Wind Turbines, named MPKG-WT. Additionally, a wind turbine assembly process question-answering system combining multi-modal knowledge graphs with large language models (LLMs) is proposed to enable efficient utilisation of historical assembly process knowledge. The proposed approach achieves outstanding results when compared with other state-of-the-art KBQA methods and recent LLMs using a wind turbine assembly process dataset. The effectiveness of the approach is further validated through a visualised assembly process question-answering system. The research findings demonstrate a significant improvement in assembly process design efficiency.KEYWORDS: Multi-modal knowledge graphWind turbinesAssembly process knowledgeLarge language modelQuestion answering Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by National Key Research and Development Program of China: [grant no 2019YFB1706300]; Shanghai Rising-Star Plan (Yangfan Program) from the Science and Technology Commission of Shanghai Municipality: [grant no 22YF1400200].","PeriodicalId":50207,"journal":{"name":"Journal of Engineering Design","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135316284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yongting Tian, Shouxu Song, Dan Zhou, Ruirui Yang, Chen Wei
{"title":"Toward sustainable joint optimisation for product family and supply chain configuration with smart contracting consideration","authors":"Yongting Tian, Shouxu Song, Dan Zhou, Ruirui Yang, Chen Wei","doi":"10.1080/09544828.2023.2271775","DOIUrl":"https://doi.org/10.1080/09544828.2023.2271775","url":null,"abstract":"AbstractThis article underscores the necessity for sustainable and environmentally friendly manufacturing practices in product family configuration (PFC) projects, which are paramount to the global economy. Nevertheless, conventional approaches often fixate solely on design aspects, overlooking downstream supply chain configuration (SCC) considerations and the corresponding environmental benefits. Consequently, there is an escalating demand for an integrated optimisation approach that encompasses both PFC and SCC to realise economic and environmental advantages. This study delves into a methodology that integrates blockchain smart contracts as binary 0–1 variables with waste recycling and utilisation, yielding a comprehensive multi-objective model. The proposed methodology seamlessly incorporates considerations for both PFC and SCC. Furthermore, a nested leader-follower optimisation algorithm, based on the non-dominated sorting genetic algorithm-II (NSGA-II), has been devised with the objective of achieving triple benefits: augmented profits, maintenance revenue, and diminished environmental emissions. In conclusion, this research contributes to the advancement of sustainable collaborative optimisation through the innovative utilisation of blockchain smart contracts and multi-level modelling. To demonstrate the effectiveness of the proposed methodology, it is applied to a 60 KW DC electric vehicle (EV) charging piles, accompanied by a sensitivity analysis to assess its management implications.KEYWORDS: Product family configurationsupply chain configurationleader-follower optimisationnon-dominated sorting genetic algorithm-IIDC charging piles AcknowledgmentsThe authors would like to thank Keda Intelligent Technology Co., Ltd. (Hefei City, Anhui Province, China) for supporting some of the data in this study. Furthermore, the author extends thanks to the collaborating entities, namely, the Chinese Academy of Environmental Sciences, Solid Waste and Chemical Management Technology Center under the Ministry of Ecology and Environment, and China National Electrical Equipment Research Institute Co., Ltd., for their generous support.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work has been funded by the National Key R & D Program in China [grant number 2019YFC1908005].","PeriodicalId":50207,"journal":{"name":"Journal of Engineering Design","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135780251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring topic modelling for generalising design requirements in complex design","authors":"Cheng Chen, Beshoy Morkos","doi":"10.1080/09544828.2023.2268850","DOIUrl":"https://doi.org/10.1080/09544828.2023.2268850","url":null,"abstract":"AbstractAs the redesign process progresses in product lifecycle management, effectively managing engineering changes becomes increasingly challenging, often leading to catastrophic and costly project failures. In response, the study provides a framework for generalising design requirements documents into topics that engineers can use to understand complex designs. Based on previous work, this study employs and compares four different models, including latent Dirichlet allocation (LDA), the collapsed Gibbs sampling algorithm for the Dirichlet multinomial mixtures model (GSDMM), LDA-BERT, and GSDMM-BERT to determine the appropriate representation of requirements documents. Both heatmaps and UMAPs are used to illustrate the correlation between topics and words. The results indicate that the combined vector representation of topic modelling and the sentence-BERT model outperforms single topic modelling. This combined model leverages the additional knowledge from a pre-trained sentence-BERT model, thereby improving model performance and word distribution in all three industrial projects. Through this proposed framework, engineers can potentially generalise high-quality requirements topics for large requirements documents.KEYWORDS: Requirement managementrequirement topicscomplex designBERTdesign process Disclosure statementNo potential conflict of interest was reported by the author(s).Notes1 https://radimrehurek.com/gensim/models/ldamodel.html2 https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html","PeriodicalId":50207,"journal":{"name":"Journal of Engineering Design","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135767037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sam Brooks, Rajkumar Roy, Jan-Henning Dirks, David Taylor
{"title":"A systematic study of biological SE systems from complexity and design perspectives","authors":"Sam Brooks, Rajkumar Roy, Jan-Henning Dirks, David Taylor","doi":"10.1080/09544828.2023.2266864","DOIUrl":"https://doi.org/10.1080/09544828.2023.2266864","url":null,"abstract":"AbstractPrevious research has presented the concept of self-engineering (SE) systems that aim to identify and preserve system functions autonomously. Examples of self-engineering responses include self-healing, self-repair, self-adapting and self-reconfiguration. Biology already utilises many of these responses to repair and survive, greater understanding of complexity in these biological systems could improve future bioinspired designs. This paper provides a novel systematic evaluation of the complexity of SE biological systems. Eight biological self-engineering systems identified are evaluated using Axiomatic design and complexity. The key functional requirements and design parameters for each biological system are identified. Design matrices were used to highlight different types of complexity. A further evaluation of eight SE biological systems is performed using the SE complexity theory; nine experts and 23 students used the complexity theory to complete a ranking exercise. The results of the ranking were analysed and compared, with a final normalised mean plotted for each factor and biological system. From the analysis of both studies, proposed design rules are presented to help designers handle complexity while creating new self-engineering systems inspired by biology.KEYWORDS: Self-healingself-repairself-engineeringbioinspireddesign AcknowledgementsThe authors would first like to thank all the student and expert participants who agreed to take part in the exercise detailed in Section 5. Excellent comments and feedback were provided by both groups.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by Engineering and Physical Sciences Research Council: [Grant Number EP/P027121/1].","PeriodicalId":50207,"journal":{"name":"Journal of Engineering Design","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135853265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soufiane El Fassi, Xin Chen, Atif Riaz, Marin D. Guenov, Albert S.J. van Heerden, Sergio Jimeno Altelarrea
{"title":"Managing assumption-driven design change via margin allocation and trade-offs","authors":"Soufiane El Fassi, Xin Chen, Atif Riaz, Marin D. Guenov, Albert S.J. van Heerden, Sergio Jimeno Altelarrea","doi":"10.1080/09544828.2023.2259741","DOIUrl":"https://doi.org/10.1080/09544828.2023.2259741","url":null,"abstract":"Assumptions are commonly introduced to fill gaps in knowledge during the engineering design process. However, the uncertainty inherent in these assumptions constitutes a risk that ought to be mitigated. That is, assumptions can negatively impact the system if they turn out to be invalid. Adverse effects may include system failure, violation of requirements, or budget and schedule overruns. In this paper, the relationships between assumptions and margins are made explicit, with the purpose of aiding risk mitigation, as well as accommodating future opportunities such as product evolvability. To this end, a novel assumption management framework is proposed, which consists of a taxonomy of margins, an algorithm for change absorber localisation, and an interactive approach for margin trade-off. The proposed framework is demonstrated with a conceptual aircraft design use case, which shows that the most relevant margins can be identified, given a revision of a set of assumptions. It is also demonstrated that the application of the method allowed the margins to be adjusted according to the confidence in the assumptions, while maintaining satisfaction of all design constraints, without unacceptable compromise of system performance.","PeriodicalId":50207,"journal":{"name":"Journal of Engineering Design","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136097964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}