The Journal of Chemical Physics最新文献

筛选
英文 中文
Excited-state properties of functionalized corrole photosensitizers: Insights from ultrafast experiments and quantum mechanical calculations 功能化光敏剂的激发态性质:来自超快实验和量子力学计算的见解
The Journal of Chemical Physics Pub Date : 2025-08-22 DOI: 10.1063/5.0264216
Yubiao Yang, Huahua Huang, Xiaolan Huo, Yi Tang, Wen Han, Jinchang Yin
{"title":"Excited-state properties of functionalized corrole photosensitizers: Insights from ultrafast experiments and quantum mechanical calculations","authors":"Yubiao Yang, Huahua Huang, Xiaolan Huo, Yi Tang, Wen Han, Jinchang Yin","doi":"10.1063/5.0264216","DOIUrl":"https://doi.org/10.1063/5.0264216","url":null,"abstract":"Corrole complex, as a new generation of porphyrin photosensitizer, shows promising applications in photodynamic therapy and optical imaging due to their unique structure and properties. However, lack of comprehensive understanding of the relationship between structure and property limits tailored preparation of demanding corroles. Here, we systematically investigate the excited-state properties of corrole complexes with diverse peripheral substitutions and central atom coordination through time-resolved fluorescence, femtosecond transient absorption spectra, and time-dependent density functional theory calculations. The results indicate that aromatic substituents affect frontier molecular orbitals, prompting intramolecular charge transfer. Coordination with main group P(V) and Ga(III) enhances macrocycle rigidity and symmetry, significantly boosting fluorescence emission rates and absorption efficiency of the Soret band, while improving intersystem crossing probabilities. Transition metal Mn(III) accelerates charge transfer from ligands to metal and shortens internal conversion and intersystem crossing times via d–pπ bonding interaction. This study establishes a foundational understanding for designing high-performance photosensitizers.","PeriodicalId":501648,"journal":{"name":"The Journal of Chemical Physics","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144924424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermodynamic quantum Fokker–Planck equations and their application to thermostatic Stirling engine 热力学量子福克-普朗克方程及其在恒温斯特林发动机中的应用
The Journal of Chemical Physics Pub Date : 2024-09-19 DOI: 10.1063/5.0225607
Shoki Koyanagi, Yoshitaka Tanimura
{"title":"Thermodynamic quantum Fokker–Planck equations and their application to thermostatic Stirling engine","authors":"Shoki Koyanagi, Yoshitaka Tanimura","doi":"10.1063/5.0225607","DOIUrl":"https://doi.org/10.1063/5.0225607","url":null,"abstract":"We developed a computer code for the thermodynamic quantum Fokker–Planck equations (T-QFPE), derived from a thermodynamic system–bath model. This model consists of an anharmonic subsystem coupled to multiple Ohmic baths at different temperatures, which are connected to or disconnected from the subsystem as a function of time. The code numerically integrates the T-QFPE and their classical expression to simulate isothermal, isentropic, thermostatic, and entropic processes in both quantum and classical cases. The accuracy of the results was verified by comparing the analytical solutions of the Brownian oscillator. In addition, we illustrated a breakdown of the Markovian Lindblad-master equation in the pure quantum regime. As a demonstration, we simulated a thermostatic Stirling engine employed to develop non-equilibrium thermodynamics [S. Koyanagi and Y. Tanimura, J. Chem. Phys. 161, 114113 (2024)] under quasi-static conditions. The quasi-static thermodynamic potentials, described as intensive and extensive variables, were depicted as work diagrams. In the classical case, the work done by the external field is independent of the system–bath coupling strength. In contrast, in the quantum case, the work decreases as the coupling strength increases due to quantum entanglement between the subsystem and bath. The codes were developed for multicore processors using Open Multi-Processing (OpenMP) and for graphics processing units using the Compute Unified Device Architecture. These codes are provided in the supplementary material.","PeriodicalId":501648,"journal":{"name":"The Journal of Chemical Physics","volume":"118 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GW with hybrid functionals for large molecular systems 大型分子系统的混合函数 GW
The Journal of Chemical Physics Pub Date : 2024-09-19 DOI: 10.1063/5.0219839
Tucker Allen, Minh Nguyen, Daniel Neuhauser
{"title":"GW with hybrid functionals for large molecular systems","authors":"Tucker Allen, Minh Nguyen, Daniel Neuhauser","doi":"10.1063/5.0219839","DOIUrl":"https://doi.org/10.1063/5.0219839","url":null,"abstract":"A low-cost approach for stochastically sampling static exchange during time-dependent Hartree–Fock-type propagation is presented. This enables the use of an excellent hybrid density functional theory (DFT) starting point for stochastic GW quasiparticle energy calculations. Generalized Kohn–Sham molecular orbitals and energies, rather than those of a local-DFT calculation, are used for building the Green function and effective Coulomb interaction. The use of an optimally tuned hybrid diminishes the starting point dependency in one-shot stochastic GW, effectively avoiding the need for self-consistent GW iterations.","PeriodicalId":501648,"journal":{"name":"The Journal of Chemical Physics","volume":"37 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classical and quantum thermodynamics in a non-equilibrium regime: Application to thermostatic Stirling engine 非平衡状态下的经典和量子热力学:热静力斯特林发动机的应用
The Journal of Chemical Physics Pub Date : 2024-09-19 DOI: 10.1063/5.0220685
Shoki Koyanagi, Yoshitaka Tanimura
{"title":"Classical and quantum thermodynamics in a non-equilibrium regime: Application to thermostatic Stirling engine","authors":"Shoki Koyanagi, Yoshitaka Tanimura","doi":"10.1063/5.0220685","DOIUrl":"https://doi.org/10.1063/5.0220685","url":null,"abstract":"We have developed a thermodynamic theory in the non-equilibrium regime, which we describe as a thermodynamic system–bath model [Koyanagi and Tanimura, J. Chem. Phys. 160, 234112 (2024)]. Based on the dimensionless (DL) minimum work principle, non-equilibrium thermodynamic potentials are expressed in terms of non-equilibrium extensive and intensive variables in time derivative form. This is made possible by incorporating the entropy production rate into the definition of non-equilibrium thermodynamic potentials. These potentials can be evaluated from the DL non-equilibrium-to-equilibrium minimum work principle, which is derived from the principle of DL minimum work and is equivalent to the second law of thermodynamics. We thus obtain the non-equilibrium Massieu–Planck potentials as entropic potentials and the non-equilibrium Helmholtz–Gibbs potentials as free energies. Unlike the fluctuation theorem and stochastic thermodynamics theory, this theory does not require the assumption of a factorized initial condition and is valid in the full quantum regime, where the system and bath are quantum mechanically entangled. Our results are numerically verified by simulating a thermostatic Stirling engine consisting of two isothermal processes and two thermostatic processes using the quantum hierarchical Fokker–Planck equations and the classical Kramers equation derived from the thermodynamic system–bath model. We then show that, from weak to strong system–bath interactions, the thermodynamic process can be analyzed using a non-equilibrium work diagram analogous to the equilibrium one for given time-dependent intensive variables. The results can be used to develop efficient heat machines in non-equilibrium regimes.","PeriodicalId":501648,"journal":{"name":"The Journal of Chemical Physics","volume":"40 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time-dependent orbital-optimized coupled-cluster methods families for fermion-mixtures dynamics 费米子混合物动力学的时变轨道优化耦合簇方法家族
The Journal of Chemical Physics Pub Date : 2024-09-18 DOI: 10.1063/5.0227236
Haifeng Lang, Takeshi Sato
{"title":"Time-dependent orbital-optimized coupled-cluster methods families for fermion-mixtures dynamics","authors":"Haifeng Lang, Takeshi Sato","doi":"10.1063/5.0227236","DOIUrl":"https://doi.org/10.1063/5.0227236","url":null,"abstract":"Five time-dependent orbital optimized coupled-cluster methods, of which four can converge to the time-dependent complete active space self-consistent-field method, are presented for fermion-mixtures with arbitrary fermion kinds and numbers. Truncation schemes maintaining the intragroup orbital rotation invariance, as well as equations of motion of coupled-cluster (CC) amplitudes and orbitals, are derived. Present methods are compact CC-parameterization alternatives to the time-dependent multiconfiguration self-consistent-field method for systems consisting of arbitrarily different kinds and numbers of interacting fermions. Theoretical analysis of applications of present methods to various chemical systems is reported.","PeriodicalId":501648,"journal":{"name":"The Journal of Chemical Physics","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The “simple” photochemistry of thiophene 噻吩的 "简单 "光化学作用
The Journal of Chemical Physics Pub Date : 2024-09-18 DOI: 10.1063/5.0226105
Michael A. Parkes, Graham A. Worth
{"title":"The “simple” photochemistry of thiophene","authors":"Michael A. Parkes, Graham A. Worth","doi":"10.1063/5.0226105","DOIUrl":"https://doi.org/10.1063/5.0226105","url":null,"abstract":"The static gas-phase (“simple”) ultraviolet absorption spectrum of thiophene is investigated using a combination of a vibronic coupling model Hamiltonian with multi-configuration time-dependent Hartree quantum dynamics simulations. The model includes five states and all 21 vibrations, with potential surfaces calculated at the complete active space with second-order perturbation level of theory. The model includes terms up to eighth-order to describe the diabatic potentials. The resulting spectrum is in excellent agreement with the experimentally measured spectrum of Holland et al. [Phys. Chem. Chem. Phys. 16, 21629 (2014)]. The, until now not understood, spectral features are assigned, with a combination of strongly coupled vibrations and vibronic coupling between the states giving rise to a progression of triplets on the rising edge of the broad spectrum. The analysis of the underlying dynamics indicates that population transfer between all states takes place on a sub-100 fs timescale, with ring-opening occurring at longer times. The model thus provides a starting point for further investigations into the complicated photo-excited dynamics of this key hetero-aromatic molecule.","PeriodicalId":501648,"journal":{"name":"The Journal of Chemical Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controlling size and distribution of Au nano-particles on C3N4 for high-efficiency photocatalytic hydrogen production 控制 C3N4 上金纳米粒子的尺寸和分布,实现高效光催化制氢
The Journal of Chemical Physics Pub Date : 2024-09-18 DOI: 10.1063/5.0226926
Xunan Ran, Zhihua Chen, Hongzhou Ji, Zhaoyu Ma, Yuxi Xie, Wenping Li, Junying Zhang
{"title":"Controlling size and distribution of Au nano-particles on C3N4 for high-efficiency photocatalytic hydrogen production","authors":"Xunan Ran, Zhihua Chen, Hongzhou Ji, Zhaoyu Ma, Yuxi Xie, Wenping Li, Junying Zhang","doi":"10.1063/5.0226926","DOIUrl":"https://doi.org/10.1063/5.0226926","url":null,"abstract":"With advantages such as low cost, high stability, and ease of production, visible light photocatalytic C3N4 with a unique microscopic layered structure holds significant potential for development. However, its hydrogen production efficiency remains low due to the pronounced recombination of photo-generated charge carriers and limited surface reaction sites. Normally, the photocatalytic performance of C3N4 can be enhanced by loading noble metals with surface plasmon resonance. It is worth noting that the size of noble metal nanoparticles has a great influence on photocatalytic performance. In this study, accurate controlling of the size and distribution of Au nanoparticles was achieved on the surface of C3N4 by introducing amino groups to improve photocatalytic performance. Results show that uniformly distributed Au nanoparticles in the range of 2–6 nm can be obtained on C3N4 with a remarkable enhancement of hydrogen production efficiency, which is about 114 times the property of pure C3N4. The small-sized and uniformly distributed Au nanoparticles can provide more reaction sites and increase the separation of photo-generated charge carriers, in turn improving Au/NH3–C3N4 photocatalytic hydrogen release rate to 6.85 mmol g−1 h−1. This work offers a facile way to enhance photocatalytic performance by controlling the size of metal nanoparticles on C3N4 precisely.","PeriodicalId":501648,"journal":{"name":"The Journal of Chemical Physics","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kohn–Sham fragment energy decomposition analysis Kohn-Sham 碎片能量分解分析
The Journal of Chemical Physics Pub Date : 2024-09-13 DOI: 10.1063/5.0216596
Tommaso Giovannini
{"title":"Kohn–Sham fragment energy decomposition analysis","authors":"Tommaso Giovannini","doi":"10.1063/5.0216596","DOIUrl":"https://doi.org/10.1063/5.0216596","url":null,"abstract":"We introduce the concept of Kohn–Sham fragment localized molecular orbitals (KS-FLMOs), which are Kohn–Sham molecular orbitals (MOs) localized in specific fragments constituting a generic molecular system. In detail, we minimize the local electronic energies of various fragments, while maximizing the repulsion between them, resulting in the effective localization of the MOs. We use the developed KS-FLMOs to propose a novel energy decomposition analysis, which we name Kohn–Sham fragment energy decomposition analysis, which allows for rationalizing the main non-covalent interactions occurring in interacting systems both in vacuo and in solution, providing physical insights into non-covalent interactions. The method is validated against state-of-the-art energy decomposition analysis techniques and with high-level calculations.","PeriodicalId":501648,"journal":{"name":"The Journal of Chemical Physics","volume":"43 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-equilibrium rate theory for polariton relaxation dynamics 极化子弛豫动力学的非平衡速率理论
The Journal of Chemical Physics Pub Date : 2024-09-13 DOI: 10.1063/5.0231396
Yifan Lai, Wenxiang Ying, Pengfei Huo
{"title":"Non-equilibrium rate theory for polariton relaxation dynamics","authors":"Yifan Lai, Wenxiang Ying, Pengfei Huo","doi":"10.1063/5.0231396","DOIUrl":"https://doi.org/10.1063/5.0231396","url":null,"abstract":"We derive an analytic expression of the non-equilibrium Fermi’s golden rule (NE-FGR) expression for a Holstein–Tavis–Cumming Hamiltonian, a universal model for many molecules collectively coupled to the optical cavity. These NE-FGR expressions capture the full-time-dependent behavior of the rate constant for transitions from polariton states to dark states. The rate is shown to be reduced to the well-known frequency domain-based equilibrium Fermi’s golden rule (E-FGR) expression in the equilibrium and collective limit and is shown to retain the same scaling with the number of sites in non-equilibrium and non-collective cases. We use these NE-FGR to perform population dynamics with a time-non-local and time-local quantum master equation and obtain accurate population dynamics from the initially occupied upper or lower polariton states. Furthermore, NE-FGR significantly improves the accuracy of the population dynamics when starting from the lower polariton compared to the E-FGR theory, highlighting the importance of the non-Markovian behavior and the short-time transient behavior in the transition rate constant.","PeriodicalId":501648,"journal":{"name":"The Journal of Chemical Physics","volume":"86 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Designing a hollow MoSe2/CuS nanospheres type-II heterojunction photocatalyst with superior UV–vis-NIR absorption for photocatalytic degradation of organic pollutants 设计具有优异紫外-可见-近红外吸收能力的中空 MoSe2/CuS 纳米球 II 型异质结光催化剂,用于光催化降解有机污染物
The Journal of Chemical Physics Pub Date : 2024-09-13 DOI: 10.1063/5.0209430
Zhilong Zhang, Rong Wu, Jianyong Yue, YaLi Zhu, JiaLei Hui
{"title":"Designing a hollow MoSe2/CuS nanospheres type-II heterojunction photocatalyst with superior UV–vis-NIR absorption for photocatalytic degradation of organic pollutants","authors":"Zhilong Zhang, Rong Wu, Jianyong Yue, YaLi Zhu, JiaLei Hui","doi":"10.1063/5.0209430","DOIUrl":"https://doi.org/10.1063/5.0209430","url":null,"abstract":"In this work, a hollow MoSe2/CuS type-II heterojunction was fabricated using hollow MoSe2 nanospheres as the basis for structural design. UV–Vis–NIR diffuse absorption tests show that MoSe2/CuS has a broad spectral absorption to extend the optical response range from UV–Vis to NIR. The light source utilization rate and interfacial area are increased by the hollow MoSe2/CuS core–shell structure. The broad absorption ability of MoSe2/CuS can facilitate the photocatalysis process. As the electrochemical impedance of MoSe2/CuS is lower than that of the MoSe2, MoSe2/CuS has a good photogenerated carrier separation efficiency. Benefiting from the synergistic facilitation effect of the multi-level 3D hollow nanosphere and the significant space charge region in type-II heterojunction, the RhB degradation efficiency of MoSe2/CuS reached 96.0% in 120.0 min under Xe (350 W) broadband spectrum light irradiation. The photocatalysis mechanism of the hollow MoSe2/CuS core–shell structure was investigated. This work provides an insight into the application of broad spectrum semiconductor heterojunctions to solve environmental problems.","PeriodicalId":501648,"journal":{"name":"The Journal of Chemical Physics","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信