Gene J. Blatt, Cheryl Brandenburg, Alexandros Poulopoulos
{"title":"Cover Image, Volume 531, Issue 18","authors":"Gene J. Blatt, Cheryl Brandenburg, Alexandros Poulopoulos","doi":"10.1002/cne.25573","DOIUrl":"https://doi.org/10.1002/cne.25573","url":null,"abstract":"The cover image is based on the Research Article <i>India ink to 3D imaging: The legacy of Dr. Deepak “Dee” N. Pandya and his influence on generations of neuroanatomists</i> by Gene J. Blatt et al., https://doi.org/10.1002/cne.25551.","PeriodicalId":501627,"journal":{"name":"The Journal of Comparative Neurology","volume":"594 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139080209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthias S. Krockenberger, Tatianna O. Saleh-Mattesich, Henry C. Evrard
{"title":"Cytoarchitectonic and connection stripes in the dysgranular insular cortex in the macaque monkey","authors":"Matthias S. Krockenberger, Tatianna O. Saleh-Mattesich, Henry C. Evrard","doi":"10.1002/cne.25571","DOIUrl":"https://doi.org/10.1002/cne.25571","url":null,"abstract":"The insula has been classically divided into broad granular, dysgranular, and agranular architectonic sectors. We previously proposed a novel partition, dividing each sector into four to seven sharply delimited architectonic areas, with the dysgranular areas being possibly further subdivided into subtle horizontal partitions or “stripes.” In architectonics, discrete subparcellations are prone to subjective variability and need being supported with additional neuroanatomical methods. Here, using a secondary analysis of indirect connectional data in the rhesus macaque monkey, we examined the spatial relationship between the dysgranular architectonic stripes and tract-tracing labeling patterns produced in the insula with injections of neuronal tracers in other cortical regions. The injections consistently produced sharply delimited patches of anterograde and/or retrograde labeling, which formed stripes across consecutive coronal sections of the insula. While the overall pattern of labeling on individual coronal sections varied with the injection site, the boundaries of the patches consistently coincided with architectonic boundaries on an adjacent cyto- (Nissl) and/or myelo- (Gallyas) architectonic section. This overlap supports the existence of a fine dysgranular stripe-like partition of the primate insula, with possibly major implications for interoceptive processing in primates including humans. The modular organization of the insula could underlie a serial stream of integration from a dorsal primary interoceptive cortex toward progressively more ventral egocentric “self-agency” and allocentric “social” dysgranular processing units.","PeriodicalId":501627,"journal":{"name":"The Journal of Comparative Neurology","volume":"86 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138717485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparison of monkey and human retrosplenial neurocytology","authors":"Brent A. Vogt, Douglas L. Rosene","doi":"10.1002/cne.25561","DOIUrl":"https://doi.org/10.1002/cne.25561","url":null,"abstract":"Retrosplenial cortex (RSC) has unique problems for human neuroimaging studies as its divisions are small, at the lower end of functional scanner spatial resolution, and it is buried in the callosal sulcus. The present study sought to define the cytoarchitecture of RSC in human and monkey brains along its entire anteroposterior extent. The results show anterior extensions, a newly defined dichotomy of area 30, a new area p30, and an area p29v in monkey that differentiates into three divisions in human. Accordingly, anterior (a), intermediate (i), and posterior (p) divisions of areas 29l, 29m, 30l, and 30m were identified. Posterior area 29 has higher neuron packing in the granular layer than anterior and intermediate divisions of area 29. A newly detected dysgranular area p30 has larger neurons in layers II–IIIab than a30 and i30 and with substantially higher NFP expression in layer IIIab of posterior areas than areas a30 and i30. Medial area 30 has larger pyramids and higher NFP expression in all layers than area 30l. The new area p30 was seen between areas p29m and p30I in both species. Finally, a ventral area p29v is present in monkeys. This latter area appears to differentiate into three divisions in human with the most extensive granular layer adjacent to layer I in p29vm and p29vl. Functional imaging has identified pRSC as part of a cognitive map which is engaged in spatial navigation and localization of personally relevant objects.","PeriodicalId":501627,"journal":{"name":"The Journal of Comparative Neurology","volume":"2020 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138557192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}