The Review of Symbolic Logic最新文献

筛选
英文 中文
LOGICS FROM ULTRAFILTERS 超滤波器的逻辑
The Review of Symbolic Logic Pub Date : 2023-11-28 DOI: 10.1017/s1755020323000357
DANIELE MUNDICI
{"title":"LOGICS FROM ULTRAFILTERS","authors":"DANIELE MUNDICI","doi":"10.1017/s1755020323000357","DOIUrl":"https://doi.org/10.1017/s1755020323000357","url":null,"abstract":"<p>Ultrafilters play a significant role in model theory to characterize logics having various compactness and interpolation properties. They also provide a general method to construct extensions of first-order logic having these properties. A main result of this paper is that every class <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231221125331656-0178:S1755020323000357:S1755020323000357_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$Omega $</span></span></img></span></span> of uniform ultrafilters generates a <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231221125331656-0178:S1755020323000357:S1755020323000357_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$Delta $</span></span></img></span></span>-closed logic <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231221125331656-0178:S1755020323000357:S1755020323000357_inline3.png\"><span data-mathjax-type=\"texmath\"><span>${mathcal {L}}_Omega $</span></span></img></span></span>. <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231221125331656-0178:S1755020323000357:S1755020323000357_inline4.png\"><span data-mathjax-type=\"texmath\"><span>${mathcal {L}}_Omega $</span></span></img></span></span> is <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231221125331656-0178:S1755020323000357:S1755020323000357_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$omega $</span></span></img></span></span>-relatively compact iff some <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231221125331656-0178:S1755020323000357:S1755020323000357_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$Din Omega $</span></span></img></span></span> fails to be <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231221125331656-0178:S1755020323000357:S1755020323000357_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$omega _1$</span></span></img></span></span>-complete iff <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231221125331656-0178:S1755020323000357:S1755020323000357_inline8.png\"><span data-mathjax-type=\"texmath\"><span>${mathcal {L}}_Omega $</span></span></img></span></span> does not contain the quantifier “there are uncountably many.” If <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231221125331656-0178:S1755020323000357:S1755020323000","PeriodicalId":501566,"journal":{"name":"The Review of Symbolic Logic","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139020521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
THE LOGIC OF HYPERLOGIC. PART A: FOUNDATIONS 超逻辑的逻辑。a部分:基础
The Review of Symbolic Logic Pub Date : 2022-04-27 DOI: 10.1017/s1755020322000193
ALEXANDER W. KOCUREK
{"title":"THE LOGIC OF HYPERLOGIC. PART A: FOUNDATIONS","authors":"ALEXANDER W. KOCUREK","doi":"10.1017/s1755020322000193","DOIUrl":"https://doi.org/10.1017/s1755020322000193","url":null,"abstract":"<p>Hyperlogic is a hyperintensional system designed to regiment metalogical claims (e.g., “Intuitionistic logic is correct” or “The law of excluded middle holds”) into the object language, including within embedded environments such as attitude reports and counterfactuals. This paper is the first of a two-part series exploring the logic of hyperlogic. This part presents a minimal logic of hyperlogic and proves its completeness. It consists of two interdefined axiomatic systems: one for classical consequence (truth preservation under a classical interpretation of the connectives) and one for “universal” consequence (truth preservation under any interpretation). The sequel to this paper explores stronger logics that are sound and complete over various restricted classes of models as well as languages with hyperintensional operators.</p>","PeriodicalId":501566,"journal":{"name":"The Review of Symbolic Logic","volume":"105 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138544258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
WHAT IS A RESTRICTIVE THEORY? 什么是限制性理论?
The Review of Symbolic Logic Pub Date : 2022-04-25 DOI: 10.1017/s1755020322000181
TOBY MEADOWS
{"title":"WHAT IS A RESTRICTIVE THEORY?","authors":"TOBY MEADOWS","doi":"10.1017/s1755020322000181","DOIUrl":"https://doi.org/10.1017/s1755020322000181","url":null,"abstract":"<p>In providing a good foundation for mathematics, set theorists often aim to develop the strongest theories possible and avoid those theories that place undue restrictions on the capacity to possess strength. For example, adding a measurable cardinal to <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230109184254371-0886:S1755020322000181:S1755020322000181_inline1.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$ZFC$\u0000</span></span>\u0000</span>\u0000</span> is thought to give a stronger theory than adding <span>\u0000<span>\u0000<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230109184254371-0886:S1755020322000181:S1755020322000181_inline2.png\"/>\u0000<span data-mathjax-type=\"texmath\"><span>\u0000$V=L$\u0000</span></span>\u0000</span>\u0000</span> and the latter is thought to be more restrictive than the former. The two main proponents of this style of account are Penelope Maddy and John Steel. In this paper, I’ll offer a third account that is intended to provide a simple analysis of restrictiveness based on the algebraic concept of retraction in the category of theories. I will also deliver some results and arguments that suggest some plausible alternative approaches to analyzing restrictiveness do not live up to their intuitive motivation.</p>","PeriodicalId":501566,"journal":{"name":"The Review of Symbolic Logic","volume":"9 1","pages":"1-42"},"PeriodicalIF":0.0,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138544317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信