ACS Pharmacology & Translational Science最新文献

筛选
英文 中文
Effect of Linker Entities on Pharmacokinetics of 111In-Labeled Prostate-Specific Membrane Antigen-Targeting Ligands with an Albumin Binder 连接体实体对带有白蛋白粘合剂的 111In 标记前列腺特异性膜抗原靶向配体药代动力学的影响
ACS Pharmacology & Translational Science Pub Date : 2024-07-08 DOI: 10.1021/acsptsci.4c00257
Nobuki Kazuta, Kazuma Nakashima, Hiroyuki Watanabe, Masahiro Ono
{"title":"Effect of Linker Entities on Pharmacokinetics of 111In-Labeled Prostate-Specific Membrane Antigen-Targeting Ligands with an Albumin Binder","authors":"Nobuki Kazuta, Kazuma Nakashima, Hiroyuki Watanabe, Masahiro Ono","doi":"10.1021/acsptsci.4c00257","DOIUrl":"https://doi.org/10.1021/acsptsci.4c00257","url":null,"abstract":"In the field of radiopharmaceutical development targeting cancer, an albumin binder (ALB) is commonly used to improve accumulation of radioligands in tumors because it has high binding affinity for albumin and extends the circulation time of radioligands. The further development of ALB-containing radioligands is also expected to regulate their pharmacokinetics. In this study, we newly designed and synthesized [<sup>111</sup>In]In-PNT-DA1 derivatives, prostate-specific membrane antigen (PSMA)-targeting radioligands including a functional linker (<span>d</span>-glutamic acid or 4-(aminomethyl)benzoic acid), and evaluated the relationships among the structure, albumin-binding affinity, and pharmacokinetics. These derivatives showed a different binding affinity for albumin by the introduction of a linker. Biodistribution studies revealed that the introduction of a linker affects the pharmacokinetics of each derivative. The biodistribution studies also suggested that moderate albumin-binding affinity enhances the tumor/kidney ratio of the derivative. SPECT imaging using [<sup>111</sup>In]In-PNT-DA3 with the highest tumor/kidney ratio among [<sup>111</sup>In]In-PNT-DA1 derivatives led to clear visualization of a PSMA-positive LNCaP tumor. The results suggest that the appropriate introduction of linker entities may be necessary to improve the pharmacokinetics of PSMA-targeting radioligands.","PeriodicalId":501473,"journal":{"name":"ACS Pharmacology & Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141609474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering Regulatory T-Cell Dynamics in Cancer Immunotherapy: Mechanisms, Implications, and Therapeutic Innovations 解密癌症免疫疗法中的调节性 T 细胞动态:机制、影响和治疗创新
ACS Pharmacology & Translational Science Pub Date : 2024-07-03 DOI: 10.1021/acsptsci.4c00156
Sankha Bhattacharya, Gaurav Paraskar, Megha Jha, Girdhari Lal Gupta, Bhupendra G. Prajapati
{"title":"Deciphering Regulatory T-Cell Dynamics in Cancer Immunotherapy: Mechanisms, Implications, and Therapeutic Innovations","authors":"Sankha Bhattacharya, Gaurav Paraskar, Megha Jha, Girdhari Lal Gupta, Bhupendra G. Prajapati","doi":"10.1021/acsptsci.4c00156","DOIUrl":"https://doi.org/10.1021/acsptsci.4c00156","url":null,"abstract":"This Review explores how tumor-associated regulatory cells (Tregs) affect cancer immunotherapy. It shows how Tregs play a role in keeping the immune system in check, how cancers grow, and how well immunotherapy work. Tregs use many ways to suppress the immune system, and these ways are affected by the tumor microenvironment (TME). New approaches to cancer therapy are showing promise, such as targeting Treg checkpoint receptors precisely and using Fc-engineered antibodies. It is important to tailor treatments to each patient’s TME in order to provide personalized care. Understanding Treg biology is essential for creating effective cancer treatments and improving the long-term outcomes of immunotherapy.","PeriodicalId":501473,"journal":{"name":"ACS Pharmacology & Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141551514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Therapeutic Insulin Analogue Concentrations at Infusion Sites Enhanced the Pro-Inflammatory Response and Apoptosis in an In Vitro Macrophage-Material Interaction Model 输注部位的治疗性胰岛素类似物浓度增强了体外巨噬细胞-材料相互作用模型中的促炎反应和细胞凋亡
ACS Pharmacology & Translational Science Pub Date : 2024-07-03 DOI: 10.1021/acsptsci.4c00363
Yuxi Zhang, Luke Kuo, Kimberly A. Woodhouse, Lindsay E. Fitzpatrick
{"title":"Therapeutic Insulin Analogue Concentrations at Infusion Sites Enhanced the Pro-Inflammatory Response and Apoptosis in an In Vitro Macrophage-Material Interaction Model","authors":"Yuxi Zhang, Luke Kuo, Kimberly A. Woodhouse, Lindsay E. Fitzpatrick","doi":"10.1021/acsptsci.4c00363","DOIUrl":"https://doi.org/10.1021/acsptsci.4c00363","url":null,"abstract":"Continuous subcutaneous insulin infusion for Type 1 diabetes relies upon insulin infusion sets (IIS) to reliably deliver insulin to a subcutaneous depot, where it is absorbed into systemic circulation. However, IIS are plagued by short wear times and high failure rates, due in part to inconsistent insulin absorption that can arise over time. While emerging evidence suggests that the local inflammatory response to the IIS cannula may impact both wear times and unreliable insulin adsorption, the mechanisms are poorly understood. Here, we investigated the effects of local infused insulin concentrations on the biomaterial host response to better understand the underlying factors that limit the IIS performance. We first modeled the insulin concentration for a constant basal infusion rate to select a relevant insulin concentration range of 0.1–10 U/mL within the infusion site. We then examined the influence of a commercial insulin analogue (Humulin-N) using an in vitro macrophage-material model, which uses adsorbed fibroblast lysate (containing damage-associated molecular patterns) to activate macrophages and recapitulates macrophage responses on implanted biomaterials. RAW-Blue macrophages cultured on lysate-adsorbed surfaces had increased nuclear factor-κB (NF-κB) and activating protein 1 (AP-1) activity and intracellular reactive oxygen species (ROS) accumulation compared to control surfaces. Humulin-N concentration (0.5–10 U/mL) enhanced the NF-κB/AP-1 activity and ROS accumulation in macrophages on lysate-adsorbed surfaces. However, Humulin-N had no effect on NF-κB/AP-1 or ROS in the absence of the inflammatory stimulus. Additionally, high insulin concentrations arising from therapeutic doses induced macrophage apoptosis with and without adsorbed lysate. This study contributes to emerging evidence that infused insulin affects the tissue response to IIS.","PeriodicalId":501473,"journal":{"name":"ACS Pharmacology & Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141551515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulation of Amyloid and Tau Aggregation to Alleviate Cognitive Impairment in a Transgenic Mouse Model of Alzheimer’s Disease 调节淀粉样蛋白和 Tau 聚集以缓解阿尔茨海默病转基因小鼠模型的认知障碍
ACS Pharmacology & Translational Science Pub Date : 2024-06-26 DOI: 10.1021/acsptsci.4c00006
Sohui Park, Jisu Shin, Kyeonghwan Kim, Darong Kim, Won Seok Lee, Jusuk Lee, Illhwan Cho, In Wook Park, Soljee Yoon, Songmin Lee, Hye Yun Kim, Ji Hoon Lee, Ki Bum Hong, YoungSoo Kim
{"title":"Modulation of Amyloid and Tau Aggregation to Alleviate Cognitive Impairment in a Transgenic Mouse Model of Alzheimer’s Disease","authors":"Sohui Park, Jisu Shin, Kyeonghwan Kim, Darong Kim, Won Seok Lee, Jusuk Lee, Illhwan Cho, In Wook Park, Soljee Yoon, Songmin Lee, Hye Yun Kim, Ji Hoon Lee, Ki Bum Hong, YoungSoo Kim","doi":"10.1021/acsptsci.4c00006","DOIUrl":"https://doi.org/10.1021/acsptsci.4c00006","url":null,"abstract":"Aggregation of misfolded amyloid-β (Aβ) and hyperphosphorylated tau proteins to plaques and tangles, respectively, is the major drug target of Alzheimer’s disease (AD), as the former is an onset biomarker and the latter is associated with neurodegeneration. Thus, we report a small molecule drug candidate, DN5355, with a dual-targeting function toward aggregates of both Aβ and tau. DN5355 was selected through a series of four screenings assessing 52 chemicals for their functions to inhibit and reverse the aggregation of Aβ and tau by utilizing thioflavin T. When orally administered to AD transgenic mouse model 5XFAD, DN5355 significantly reduced cerebral Aβ plaques and hyperphosphorylated tau tangles. In Y-maze spontaneous alteration and contextual fear conditioning tests, 5XFAD mice showed amelioration of cognitive deficits upon the oral administration of DN5355.","PeriodicalId":501473,"journal":{"name":"ACS Pharmacology & Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141513861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanotechnology-Enhanced Naloxone and Alternative Treatments for Opioid Addiction 纳米技术增强纳洛酮和阿片类药物成瘾的替代疗法
ACS Pharmacology & Translational Science Pub Date : 2024-05-27 DOI: 10.1021/acsptsci.4c00158
Ingrid Marie Heyns, Alina Farah Faunce, Mercy Ngosa Mumba, M. N. V. Ravi Kumar, Meenakshi Arora
{"title":"Nanotechnology-Enhanced Naloxone and Alternative Treatments for Opioid Addiction","authors":"Ingrid Marie Heyns, Alina Farah Faunce, Mercy Ngosa Mumba, M. N. V. Ravi Kumar, Meenakshi Arora","doi":"10.1021/acsptsci.4c00158","DOIUrl":"https://doi.org/10.1021/acsptsci.4c00158","url":null,"abstract":"Opioids are commonly prescribed to address intense, ongoing pain associated with cancer, as well as long-lasting noncancer-related pain when alternative methods have proven ineffective. Individuals who exhibit both chronic pain and misuse of opioids face a significant danger of experiencing adverse health outcomes and the potential loss of life related to opioid use. Thus, there is a current movement to prescribe naloxone to those considered high-risk for opioid overdose. Naloxone has been explored as an antidote to reverse acute respiratory depression. Conversely, naloxone can give rise to other problems, including hypertension and cardiac arrhythmias. Thus, the importance of nanotechnology-enabled drug delivery strategies and their role in mitigating naloxone side-effects are significant. In this review, we explore the latest advancements in nanotechnology-enabled naloxone and alternative methods for addressing the opioid crisis through the utilization of non-opioid natural alternatives for chronic pain management.","PeriodicalId":501473,"journal":{"name":"ACS Pharmacology & Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141171098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large- and Small-Animal Studies of Safety, Pharmacokinetics, and Biodistribution of Inflammasome-Targeting Nanoligomer in the Brain and Other Target Organs 关于炎症靶向纳米配体在大脑和其他靶器官中的安全性、药代动力学和生物分布的大型和小型动物研究
ACS Pharmacology & Translational Science Pub Date : 2024-03-21 DOI: 10.1021/acsptsci.4c00068
Sydney Risen, Breonna Kusick, Sadhana Sharma, Vincenzo S. Gilberto, Stephen Brindley, Mikayla Aguilar, Jared M. Brown, Stephanie McGrath, Anushree Chatterjee, Julie A. Moreno, Prashant Nagpal
{"title":"Large- and Small-Animal Studies of Safety, Pharmacokinetics, and Biodistribution of Inflammasome-Targeting Nanoligomer in the Brain and Other Target Organs","authors":"Sydney Risen, Breonna Kusick, Sadhana Sharma, Vincenzo S. Gilberto, Stephen Brindley, Mikayla Aguilar, Jared M. Brown, Stephanie McGrath, Anushree Chatterjee, Julie A. Moreno, Prashant Nagpal","doi":"10.1021/acsptsci.4c00068","DOIUrl":"https://doi.org/10.1021/acsptsci.4c00068","url":null,"abstract":"Immune malfunction or misrecognition of healthy cells and tissue, termed autoimmune disease, is implicated in more than 80 disease conditions and multiple other secondary pathologies. While pan-immunosuppressive therapies like steroids can offer limited relief for systemic inflammation for some organs, many patients never achieve remission, and such drugs do not cross the blood–brain barrier, making them ineffective for tackling neuroinflammation. Especially in the brain, unintended activation of microglia and astrocytes is hypothesized to be directly or indirectly responsible for multiple sclerosis, amyotrophic lateral sclerosis, Parkinson’s disease, and Alzheimer’s disease. Recent studies have also shown that targeting inflammasomes and specific immune targets can be beneficial for these diseases. Furthermore, our previous studies have shown targeting NF-κB and NLRP3 through brain penetrant Nanoligomer cocktail SB_NI_112 (abbreviated as NI112) can be therapeutic for several neurodegenerative diseases. Here, we show safety-toxicity studies, followed by pharmacokinetics and biodistribution in small- (mice) and large-animal (dog) studies of this inflammasome-targeting Nanoligomer cocktail NI112. We conducted studies using four different routes of administration: intravenous, subcutaneous, intraperitoneal, and intranasal, and identified the drug concentration over time using inductively coupled plasma mass spectrometry in the blood serum, the brain (including different brain regions), and other target organs such as liver, kidney, and colon. Our results indicate that the Nanoligomer cocktail has a strong safety profile and shows high biodistribution (<i>F</i> ∼ 0.98) and delivery across multiple routes of administration. Further analysis showed high brain bioavailability with a ratio of NI112 in brain tissue to blood serum of ∼30%. Our model accurately shows dose scaling, translation between different routes of administration, and interspecies scaling. These results provide an excellent platform for human clinical translation and prediction of therapeutic dosage between different routes of administration.","PeriodicalId":501473,"journal":{"name":"ACS Pharmacology & Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140196925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信