George Ronan, Gokhan Bahcecioglu, Nihat Aliyev, Pinar Zorlutuna
{"title":"Engineering the cardiac tissue microenvironment","authors":"George Ronan, Gokhan Bahcecioglu, Nihat Aliyev, Pinar Zorlutuna","doi":"10.1088/2516-1091/ad0ea7","DOIUrl":"https://doi.org/10.1088/2516-1091/ad0ea7","url":null,"abstract":"In this article we review the microfabrication approaches, with a focus on bioprinting and organ-on-chip technologies, used to engineer cardiac tissue. First, we give a brief introduction to heart anatomy and physiology, and the developmental stages of the heart from fetal stages to adulthood. We also give information on the cardiac tissue microenvironment, including the cells residing in the heart, the biochemical composition and structural organization of the heart extracellular matrix, the signaling factors playing roles in heart development and maturation, and their interactions with one another. We then give a brief summary of both cardiovascular diseases and the current treatment methods used in the clinic to treat these diseases. Second, we explain how tissue engineering recapitulates the development and maturation of the normal or diseased heart microenvironment by spatially and temporally incorporating cultured cells, biomaterials, and growth factors (GF). We briefly expand on the cells, biomaterials, and GFs used to engineer the heart, and the limitations of their use. Next, we review the state-of-the-art tissue engineering approaches, with a special focus on bioprinting and heart-on-chip technologies, intended to (i) treat or replace the injured cardiac tissue, and (ii) create cardiac disease models to study the basic biology of heart diseases, develop drugs against these diseases, and create diagnostic tools to detect heart diseases. Third, we discuss the recent trends in cardiac tissue engineering, including the use of machine learning, CRISPR/Cas editing, exosomes and microRNAs, and immune modeling in engineering the heart. Finally, we conclude our article with a brief discussion on the limitations of cardiac tissue engineering and our suggestions to engineer more reliable and clinically relevant cardiac tissues.","PeriodicalId":501097,"journal":{"name":"Progress in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138681185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sayanti Shome, M. Kodieswaran, Rajat Dadheech, Maheshwari Chevella, Sreemoyee Sensharma, Sanu Awasthi, Ashutosh Bandyopadhyay, B. Mandal
{"title":"Recent advances in platelet-rich plasma and its derivatives: therapeutic agents for tissue engineering and regenerative medicine","authors":"Sayanti Shome, M. Kodieswaran, Rajat Dadheech, Maheshwari Chevella, Sreemoyee Sensharma, Sanu Awasthi, Ashutosh Bandyopadhyay, B. Mandal","doi":"10.1088/2516-1091/ad1338","DOIUrl":"https://doi.org/10.1088/2516-1091/ad1338","url":null,"abstract":"\u0000 Platelet rich plasma (PRP) is a suspension of bioactive factors and chemokine enriched plasma. Platelets are a distinctive source of membrane bound and soluble proteins that are released upon their activation. The higher count of platelets renders PRP with an array of tissue regenerative abilities. PRP can be employed in the form of platelet containing plasma, platelet lysate plasma, or in the form of a pre-gelled fibrin matrix. PRP has been an essential alternative source of growth factors in the healing and regeneration of various tissues, such as musculoskeletal, cardiovascular, and dermal tissue, with additional applications in other tissues, such as hepatic and neural. A wide range of preparative and isolation strategies have been developed for various forms of PRP at laboratory and commercial scales. Concomitantly, PRP has found its applicability as an active component in several tissue regenerative approaches, including 3D printed/bioprinted constructs, injectable hydrogels, and crosslinked scaffolds. This review focuses on the various forms of PRP and their preparation methods, the latest tissue engineering applications of PRP, and the various tissue-specific clinical trials and findings conducted using PRP. We have further discussed the optimizations required in the methods of preparation, delivery, and long-term storage of PRP. Therefore, this review seeks to benefit the scope of research on PRP-based therapeutic agents in tissue engineering by providing comprehensive insights into the widespread application. We believe PRP could be instrumental in future patient-specific tissue engineering applications in both pre-clinical and clinical settings.","PeriodicalId":501097,"journal":{"name":"Progress in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138592860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Soft wearable sensors for monitoring symptoms of COVID-19 and other respiratory diseases: a review","authors":"Yuxuan Liu, Darpan Shukla, Holly Newman, Yong Zhu","doi":"10.1088/2516-1091/ac2eae","DOIUrl":"https://doi.org/10.1088/2516-1091/ac2eae","url":null,"abstract":"<p>The COVID-19 pandemic has put extraordinary stress on medical systems and global society more broadly. The condition of infected patients may deteriorate rapidly due to overburdened hospital systems. This raises an urgent need for real-time and remote monitoring of physiological parameters to address the challenges associated with the COVID-19 pandemic. This review will present recent progress on soft wearable sensors that can potentially be used for monitoring respiratory diseases such as COVID-19. First, emerging monitoring devices and systems that can monitor key physiological parameters as suggested by the Centers for Disease Control and Prevention (e.g. body temperature, respiration rate, heart rate, oxygen saturation and body movement) are reviewed. Then, multimodal sensor systems consisting of two or more correlative sensors are presented. This review will conclude with challenges and future directions for wearable sensors for the diagnosis and therapy of respiratory diseases. While this review focuses on COVID-19, the sensing technologies reviewed can be applicable to other respiratory diseases such as H1N1 influenza.</p>","PeriodicalId":501097,"journal":{"name":"Progress in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138496028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}