{"title":"In situ confined vertical growth of Co2.5Ni0.5Si2O5(OH)4 nanoarrays on rGO for an efficient oxygen evolution reaction","authors":"Yang Mu, Xiaoyu Pei, Yunfeng Zhao, Xueying Dong, Zongkui Kou, Miao Cui, Changgong Meng, Yifu Zhang","doi":"10.1016/j.nanoms.2022.04.002","DOIUrl":"https://doi.org/10.1016/j.nanoms.2022.04.002","url":null,"abstract":"<p>Rational design of oxygen evolution reaction (OER) catalysts at low cost would greatly benefit the economy. Taking advantage of earth-abundant elements Si, Co and Ni, we produce a unique-structure where cobalt-nickel silicate hydroxide [Co<sub>2.5</sub>Ni<sub>0.5</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub>] is vertically grown on a reduced graphene oxide (rGO) support (CNS@rGO). This is developed as a low-cost and prospective OER catalyst. Compared to cobalt or nickel silicate hydroxide@rGO (CS@rGO and NS@rGO, respectively) nanoarrays, the bimetal CNS@rGO nanoarray exhibits impressive OER performance with an overpotential of 307 mV@10 mA cm<sup>−2</sup>. This value is higher than that of CS@rGO and NS@rGO. The CNS@rGO nanoarray has an overpotential of 446 mV@100 mA cm<sup>−2</sup>, about 1.4 times that of the commercial RuO<sub>2</sub> electrocatalyst. The achieved OER activity is superior to the state-of-the-art metal oxides/hydroxides and their derivatives. The vertically grown nanostructure and optimized metal-support electronic interactions play an indispensable role for OER performance improvement, including a fast electron transfer pathway, short proton/electron diffusion distance, more active metal centers, as well as optimized dual-atomic electron density. Taking advantage of interlay chemical regulation and the <em>in-situ</em> growth method, the advanced-structural CNS@rGO nanoarrays provide a new horizon to the rational and flexible design of efficient and promising OER electrocatalysts.</p>","PeriodicalId":501090,"journal":{"name":"Nano Materials Science","volume":"53 24","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138495172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}