Journal of Plant Ecology最新文献

筛选
英文 中文
Aboveground net primary productivity was not limited by phosphorus in a temperate typical steppe in Inner Mongolia 内蒙古温带典型草原地上净初级生产力不受磷的限制
IF 2.7 2区 环境科学与生态学
Journal of Plant Ecology Pub Date : 2022-08-25 DOI: 10.1093/jpe/rtac085
Yumeng Guo, Meng Zhou, J. Sheng, Yujia Yuan, Guangyuan Yuan, Wen‐Hao Zhang, Wenming Bai
{"title":"Aboveground net primary productivity was not limited by phosphorus in a temperate typical steppe in Inner Mongolia","authors":"Yumeng Guo, Meng Zhou, J. Sheng, Yujia Yuan, Guangyuan Yuan, Wen‐Hao Zhang, Wenming Bai","doi":"10.1093/jpe/rtac085","DOIUrl":"https://doi.org/10.1093/jpe/rtac085","url":null,"abstract":"\u0000 Phosphorus (P) is an essential element for plant growth, however, whether the aboveground net primary productivity (ANPP) of typical steppe was limited by P remains obscure. To detect the effects of P addition on primary productivity and aboveground biomass of different plant functional groups both under ambient and N addition conditions, ANPP and aboveground biomass of grasses and forbs were measured from 2016 to 2020 on a 16-year N and P addition experiment platform in a temperate typical steppe in Inner Mongolia. The soil available N and P concentration were also determined to test the relationship between ANPP and the availability of soil nutrient. We found that P addition under ambient condition had no significant effect on ANPP and the aboveground biomass of grasses and forbs. Whereas, under N addition, P addition significantly increased ANPP and the aboveground biomass of forbs. Furthermore, soil available N and P concentration were increased significantly by N and P addition, respectively. Moreover, there was no significant correlation between ANPP and soil available P concentration, while, ANPP was positively correlated with soil available N concentration. These results suggested that P was not the key factor limiting the primary productivity of the temperate typical steppe in Inner Mongolia. However, under N addition, P addition can promote ANPP and alter the community composition. These findings provide valuable information for the management of the temperate typical steppe.","PeriodicalId":50085,"journal":{"name":"Journal of Plant Ecology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49628786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of pesticide application and plant sexual identity on leaf physiological traits and phyllosphere bacterial communities 施用农药和植物性别认同对叶片生理性状和叶根圈细菌群落的影响
IF 2.7 2区 环境科学与生态学
Journal of Plant Ecology Pub Date : 2022-08-24 DOI: 10.1093/jpe/rtac084
Zuodong Zhu, Yue He, Jiahui Xu, Zhenghu Zhou, Amit Kumar, Zhichao Xia
{"title":"Effects of pesticide application and plant sexual identity on leaf physiological traits and phyllosphere bacterial communities","authors":"Zuodong Zhu, Yue He, Jiahui Xu, Zhenghu Zhou, Amit Kumar, Zhichao Xia","doi":"10.1093/jpe/rtac084","DOIUrl":"https://doi.org/10.1093/jpe/rtac084","url":null,"abstract":"\u0000 Pesticides are widely used to enhance food production on a global scale. However, little information is available on the effects of pesticide application on leaf physiology and phyllosphere bacterial communities of dioecious plants. Therefore, this study aimed to assess the impact of λ-cyhalothrin, a broad-spectrum pesticide, on leaf physiology and phyllosphere bacterial communities in the dioecious Populus cathayana. Physiological leaf traits such as photosynthetic apparatus (net photosynthetic rate (Pn), stomatal conductance (gs), and transpiration (E)) of males were significantly higher than those of females, independent of pesticide use. In contrast, pesticide application significantly reduced the photosynthetic apparatus for both sexes, and the reduction was greater in males relative to females. Also, pesticide application significantly increased peroxidase (POD) activity and malondialdehyde (MDA) content and maintained superoxide dismutase (SOD) activity and total chlorophyll content in leaves of males. The phyllosphere bacteria showed some conserved characteristics, in which, Simpson and Shannon diversity indices were not affected by sex or pesticide application. Phyllosphere bacterial community composition differed between females and males indicating that intrinsic sex significantly shaped the phyllosphere bacteria community. However, pesticide application significantly increased the relative abundance of Actinobacteria but reduced the relative abundance of Proteobacteria. Principal component analysis showed associations between leaf physiology and specific bacterial taxa. For instance, Proteobacteria negatively correlated with leaf SOD activity and MDA content, while Actinobacteria showed an opposite pattern. Our study highlights sex-specific phyllosphere bacterial community composition and leaf physiological traits in dioecious plants.","PeriodicalId":50085,"journal":{"name":"Journal of Plant Ecology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46310399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Mycorrhizal fungi reduce fitness differences, but coexistence is determined by differences in intrinsic plant mycorrhizal responsiveness 菌根真菌减少适合度差异,但共存是由植物内在菌根响应性的差异决定的
IF 2.7 2区 环境科学与生态学
Journal of Plant Ecology Pub Date : 2022-08-23 DOI: 10.1093/jpe/rtac081
C. Wagg, A. McKenzie‐Gopsill
{"title":"Mycorrhizal fungi reduce fitness differences, but coexistence is determined by differences in intrinsic plant mycorrhizal responsiveness","authors":"C. Wagg, A. McKenzie‐Gopsill","doi":"10.1093/jpe/rtac081","DOIUrl":"https://doi.org/10.1093/jpe/rtac081","url":null,"abstract":"\u0000 Plant–arbuscular mycorrhizal fungal (AMF) associations can mediate soil resources among competing plants to influence plant resource capture and fitness, making AMF a potential agent of plant coexistence. We assessed plant coexistence, via niche and fitness differences, using six plant species varying in their mycorrhizal status. We grew the species in 15 competitive pairs with or without AMF. Effects of AMF on coexistence were determined by parametrising pairwise Lotka–Volterra plant competition models. Responses of the six plant species to AMF were determined by comparing the shoot biomass of single plants grown in the absence of any competition with AMF to the shoot biomass without AMF. The inoculation with AMF reduced the fitness differences between competitors, but the degree of AMF-mediated coexistence depended on the identity of the competing plant species. A greater AMF response difference between competing plant species reduced niche overlap and increased coexistence. These results show that while AMF generally reduce fitness differences, the equalizing effect of AMF is not always strong enough to overcome a competitive imbalance due to niche overlap and thus does not always lead to coexistence. Instead, it is the intrinsic growth response of different plant species to AMF can predict reduced niche overlap that in turn leads to coexistence. This implies that mycorrhizal dependence is a plant strategy to reduce niche overlap with competitors allowing for greater coexistence.","PeriodicalId":50085,"journal":{"name":"Journal of Plant Ecology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45437337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seasonal grazing alters nutrient resorption and conservation, and affects spring growth of Stipa grandis 季节性放牧改变了大针茅养分的吸收和保存,影响了大针茅的春季生长
IF 2.7 2区 环境科学与生态学
Journal of Plant Ecology Pub Date : 2022-08-23 DOI: 10.1093/jpe/rtac083
Tongrui Zhang, F. Li, Lin Wu, Hao-Yun Wang, Yanlong Li, C. Shi
{"title":"Seasonal grazing alters nutrient resorption and conservation, and affects spring growth of Stipa grandis","authors":"Tongrui Zhang, F. Li, Lin Wu, Hao-Yun Wang, Yanlong Li, C. Shi","doi":"10.1093/jpe/rtac083","DOIUrl":"https://doi.org/10.1093/jpe/rtac083","url":null,"abstract":"\u0000 Nutrient resorption in autumn is a key mechanism of perennial plants for nutrient conservation and efficient use in grassland. Grazing effects on plant nutrient resorption may alter root nutrient conservation and affect plant growth in the subsequent spring. There are many studies on nutrient resorption and conservation of plants in grazing grassland, but few studies on its effect on plant growth in subsequent spring. Taking Stipa grandis, a dominant perennial grass in a semi-arid steppe as a model plant, we examined plant nitrogen (N) and phosphorous (P) resorption traits (resorption efficiency, proficiency and flux) and root nutrient conservation traits (root biomass and nutrient pool) in autumn, and plant growth traits (height, biomass and nutrient pool) in the subsequent spring, in an experimental grassland under four grazing-season treatments (i.e., grazing in spring, summer or autumn, or no grazing). We found that (1) 51-66% of N and 58-80% of P in S. grandis shoots were resorbed in autumn, and the resorption flux was the lowest under autumn grazing, and highest under spring grazing. (2) Root nutrient conservation traits were significantly reduced by summer grazing, slightly decreased by spring grazing, but not affected by autumn grazing. (3) Plant growth in next spring was the best under early spring grazing and the worst under autumn grazing, which was mainly affected by soil moisture rather than root nutrient storage. Our study provides insights into the process of plant nutrient cycling and a theoretical basis for establishing grazing system for grassland protection and rational utilization.","PeriodicalId":50085,"journal":{"name":"Journal of Plant Ecology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48415329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new system for distinguishing native from exotic species in China 中国本土与外来种的新区分体系
IF 2.7 2区 环境科学与生态学
Journal of Plant Ecology Pub Date : 2022-08-23 DOI: 10.1093/jpe/rtac080
Song-Zhi Xu, Han Xu, Caiyun Zhao, Zhen-Yu Li
{"title":"A new system for distinguishing native from exotic species in China","authors":"Song-Zhi Xu, Han Xu, Caiyun Zhao, Zhen-Yu Li","doi":"10.1093/jpe/rtac080","DOIUrl":"https://doi.org/10.1093/jpe/rtac080","url":null,"abstract":"","PeriodicalId":50085,"journal":{"name":"Journal of Plant Ecology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48101447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increasing nitrogen addition rates suppressed long-term litter decomposition in a temperate meadow steppe 增加氮添加量可抑制温带草甸草原凋落物的长期分解
IF 2.7 2区 环境科学与生态学
Journal of Plant Ecology Pub Date : 2022-08-08 DOI: 10.1093/jpe/rtac078
Pei Zheng, R. Zhao, Liangchao Jiang, Guojiao Yang, Yinliu Wang, Ruzhen Wang, Xingguo Han, Qiushi Ning
{"title":"Increasing nitrogen addition rates suppressed long-term litter decomposition in a temperate meadow steppe","authors":"Pei Zheng, R. Zhao, Liangchao Jiang, Guojiao Yang, Yinliu Wang, Ruzhen Wang, Xingguo Han, Qiushi Ning","doi":"10.1093/jpe/rtac078","DOIUrl":"https://doi.org/10.1093/jpe/rtac078","url":null,"abstract":"\u0000 Plant litter decomposition is critical for the carbon (C) balance and nutrient turnover in terrestrial ecosystems and sensitive to the ongoing anthropogenic nitrogen (N) input. Previous studies evaluating the N effect on litter decomposition relied mostly on short-term experiments (< 2 years), which probably masked the real N effect on litter decomposition. Therefore, long-lasting experiments are imperative for the overall evaluation of the litter decomposition dynamics under N enrichment. We conducted a long-term (4-year) N addition experiment with N levels from 0 – 50 g N m -2 yr -1 to examine the potential abiotic and biotic factors in regulating the decomposition process of litterfall from the dominant species Leymus chinensis. The long-term experiment exhibited a consistent decrease of decomposition rate with increasing N addition rates, providing strong evidence showing the inhibitory effect of N addition on decomposition. The N-induced alterations in soil environment (acidification and nutrient stoichiometry), microbial activity (microbial biomass and enzyme activity), changes of litter quality (residual lignin and nutrient content) and plant community (aboveground productivity and species richness) jointly contributed to the lowered decomposition. During the whole decomposition process, the changes of litter quality, including accumulation of lignin and the concentrations of nutrient, were mainly driven by the soil environment and microbial activity in this N-enriched environment. The findings help clarify how increasing N input rates affect long-term litter decomposition, and improve the mechanistic understanding of the linkages between ecosystem N enrichment and C cycling.","PeriodicalId":50085,"journal":{"name":"Journal of Plant Ecology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43063320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Typical Ephemeral Plant -Erodium oxyrrhinchum: Growth Response to Snow Change in Temperate Desert, Northwest China 温带荒漠典型短命植物——黄牡丹对积雪变化的生长响应
IF 2.7 2区 环境科学与生态学
Journal of Plant Ecology Pub Date : 2022-08-01 DOI: 10.1093/jpe/rtac079
Jin-fei Yin, Xiaobing Zhou, N. Wu, Yuanming Zhang
{"title":"Typical Ephemeral Plant -Erodium oxyrrhinchum: Growth Response to Snow Change in Temperate Desert, Northwest China","authors":"Jin-fei Yin, Xiaobing Zhou, N. Wu, Yuanming Zhang","doi":"10.1093/jpe/rtac079","DOIUrl":"https://doi.org/10.1093/jpe/rtac079","url":null,"abstract":"\u0000 Snow cover changes in temperate desert ecosystems influence plant diversity, richness, and distribution. The growth and distribution of herbaceous plants in these ecosystems are closely related to snow-cover depth, the most important water resource during the growth period due to water shortage during the dry season. However, the response to snow cover change in winter remains unclear. The present investigation was undertaken to examine the influence of snow cover change on the root growth of herbaceous species. The growth of desert typical ephemeral species, Erodium oxyrrhinchum was examined in Gurbantunggut Desert with four snow cover depth treatments in winter. The four treatments were snow removal (−S), ambient snow, double snow (+S), and triple snow (+2S). The snow depth addition increased the abundance and growth rate of herbaceous plants. It also enhanced the biomass (including total and individual biomass) of these plants. The leaf area (LA) of E. oxyrrhinchum increased significantly with snow addition, and the leaf dry matter content (LDMC) had an opposite trend. The study showed that the above-ground section of the plant was more sensitive to snow change than the underground. Snow change also influenced the root morphology. Snow remove resulted in the emergence of more lateral root, whereas snow addition promoted the elongation of the main root for water and nutrient absorption. These results explain how changes in winter snow cover depth alter plant growth, community structure, and ecosystem function during the growing period in temperate desert ecosystems.","PeriodicalId":50085,"journal":{"name":"Journal of Plant Ecology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43696479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
JPE Best Paper awards (2020) 2020年JPE最佳论文奖
IF 2.7 2区 环境科学与生态学
Journal of Plant Ecology Pub Date : 2022-08-01 DOI: 10.1093/jpe/rtac076
Wen-Hao Zhang, B. Schmid
{"title":"JPE Best Paper awards (2020)","authors":"Wen-Hao Zhang, B. Schmid","doi":"10.1093/jpe/rtac076","DOIUrl":"https://doi.org/10.1093/jpe/rtac076","url":null,"abstract":"","PeriodicalId":50085,"journal":{"name":"Journal of Plant Ecology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46605612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of land use on soil microbial community structure and diversity in the Yellow River floodplain 土地利用对黄河泛滥平原土壤微生物群落结构和多样性的影响
IF 2.7 2区 环境科学与生态学
Journal of Plant Ecology Pub Date : 2022-07-26 DOI: 10.1093/jpe/rtac075
Xiongde Dong, Leyun Yang, Laura Sofie Harbo, Xinyu Yan, Jing Chen, Cancan Zhao, Yutong Xiao, Hao Liu, Shilin Wang, Y. Miao, Dong Wang, Shijie Han
{"title":"Effects of land use on soil microbial community structure and diversity in the Yellow River floodplain","authors":"Xiongde Dong, Leyun Yang, Laura Sofie Harbo, Xinyu Yan, Jing Chen, Cancan Zhao, Yutong Xiao, Hao Liu, Shilin Wang, Y. Miao, Dong Wang, Shijie Han","doi":"10.1093/jpe/rtac075","DOIUrl":"https://doi.org/10.1093/jpe/rtac075","url":null,"abstract":"\u0000 Soil microorganisms and their diversity are important bio-indicators of soil carbon and nutrient cycling. Land use type is a major determining factor that influences soil microbial community composition in floodplain ecosystems. However, how the structure and diversity of soil microbial communities respond to specific changes in land use, as well as the main drivers of these changes, are still unclear. This study was conducted in the Yellow River floodplain to examine the effects of land use type on soil microbial communities. Four land use types (shrubland, farmland, grassland, and forest) were selected, wherein shrubland served as the baseline. We measured soil microbial structure and diversity using phospholipid fatty acids (PLFAs). Land use type significantly affected total, bacterial, and fungal PLFAs, and the gram-positive/negative bacterial PLFAs. Compared with shrubland, peanut farmland had higher total and bacterial PLFAs and forest had higher fungal PLFAs. Soil pH and phosphorus were the predominate drivers of microbial PLFAs, explaining 37% and 26% of the variability, respectively. Soil total nitrogen and nitrate nitrogen were the main factors increasing microbial community diversity. Peanut farmland had the highest soil carbon content, soil carbon stock, total PLFAs, and microbial diversity, suggesting that farmland has great potential as a carbon sink. Our findings indicated that peanut farmland in the Yellow River floodplain is critical for maintaining soil microbial communities and soil carbon sequestration.","PeriodicalId":50085,"journal":{"name":"Journal of Plant Ecology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42966435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Accelerated warming in the late 20 th century promoted tree radial growth in the Northern Hemisphere 20世纪后期的加速变暖促进了北半球树木的径向生长
IF 2.7 2区 环境科学与生态学
Journal of Plant Ecology Pub Date : 2022-07-21 DOI: 10.1093/jpe/rtac077
Jie Liu, Zongshan Li, Maierdang Keyimu, Xiaochun Wang, Haibin Liang, Xiaoming Feng, G. Gao, B. Fu
{"title":"Accelerated warming in the late 20 th century promoted tree radial growth in the Northern Hemisphere","authors":"Jie Liu, Zongshan Li, Maierdang Keyimu, Xiaochun Wang, Haibin Liang, Xiaoming Feng, G. Gao, B. Fu","doi":"10.1093/jpe/rtac077","DOIUrl":"https://doi.org/10.1093/jpe/rtac077","url":null,"abstract":"\u0000 Accelerated global warming in the late 20 th century led to frequent forest-decline events in the Northern Hemisphere and increased the complexity of the relationships between tree growth and climate factors. However, few studies have explored the heterogeneity of responses of tree growth to climate factors in different regions of the Northern Hemisphere before and after accelerated warming. In this study, a total of 229 temperature-sensitive tree-ring width chronologies from nine regions on three continents in the Northern Hemisphere were used in the data analysis performed herein. A bootstrapped correlation analysis method was used to investigate whether the tree growth-climate response changed significantly in different regions between the periods before and after rapid warming. Probability density functions and piecewise linear fitting were used to study the fluctuation characteristics of the tree-ring width indices before and after rapid warming. At the end of the 20 th century (from 1977-2000), rapid warming significantly promoted the radial growth of trees in different regions of the Northern Hemisphere, but tree radial growth was heterogenous among the different regions from 1950-2000. After 1976, except in central North America and northern Europe, the correlation between tree growth and temperature increased significantly in the Northern Hemisphere, especially in Asia. From 1977-2000, tree-ring index and temperature divergences were observed in nine regions with a divergence of 2-5 years. From 1950-2000, tree growth tracked better average temperature variability in the Northern Hemisphere than regional temperature.","PeriodicalId":50085,"journal":{"name":"Journal of Plant Ecology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43916901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信