Journal of Porous Media最新文献

筛选
英文 中文
Multi- Stratified Effects on Stagnation Point Nanofluid Flow with Gyrotactic Microorganisms over Porous Medium 多孔介质上陀螺仪微生物对纳米流体滞止点流动的多层效应
IF 2.3 4区 工程技术
Journal of Porous Media Pub Date : 2023-12-01 DOI: 10.1615/jpormedia.2023050040
P. Meena Rajeswari, Poulomi De
{"title":"Multi- Stratified Effects on Stagnation Point Nanofluid Flow with Gyrotactic Microorganisms over Porous Medium","authors":"P. Meena Rajeswari, Poulomi De","doi":"10.1615/jpormedia.2023050040","DOIUrl":"https://doi.org/10.1615/jpormedia.2023050040","url":null,"abstract":"Present investigation focus on the intricate interplay of multiple stratified effects on the stagnation point nanofluid flow with gyrotactic microorganisms across a porous medium. The study encompasses a comprehensive numerical analysis, examining the impacts of varying parameters such stratification parameters, porosity etc. on the flow characteristics. The gyrotactic behavior of microorganisms further adds complexity to the analysis. The findings contribute to a deeper understanding of the combined effects and their consequences on heat and mass transfer within the system. Such insights hold relevance in various engineering and environmental applications, including biofuel production and water treatment processes. Numerical solutions are obtained via fifth order Runge-Kutta-Fehlberg method with shooting technique. Graphical view of velocity, temperature, concentration and density of microorganism profile concerned parameters are discussed in details. Comparison with local Nusselt number for distinct values of Prandtl number considered to reveal the validity of current result. The temperature, concentration and density of microorganism fields lessened with enhancement of thermal, solutal and motile stratification parameters. Also concentration field boosts with enhancement of thermophoresis and Brownian motion parameter.","PeriodicalId":50082,"journal":{"name":"Journal of Porous Media","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138542044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Digital images analysis and quantitative structure-permeability relationships 数字图像分析和定量结构-渗透关系
IF 2.3 4区 工程技术
Journal of Porous Media Pub Date : 2023-12-01 DOI: 10.1615/jpormedia.2023049839
Alejandro Ramirez-Velez, Carolina Rodriguez-Cardona, Estephania Restrepo-Villegas
{"title":"Digital images analysis and quantitative structure-permeability relationships","authors":"Alejandro Ramirez-Velez, Carolina Rodriguez-Cardona, Estephania Restrepo-Villegas","doi":"10.1615/jpormedia.2023049839","DOIUrl":"https://doi.org/10.1615/jpormedia.2023049839","url":null,"abstract":"In this work multiple linear regression was used to obtain mathematical models with which it is possible to predict the permeability of isotropic porous media. With this aim, a database containing the binary files of the digital images of a wide variety of structures was built. These files allowed to: 1) extract statistical and morphological descriptors of the solid and void phases that were used as independent variables and 2) calculate permeability (dependent variable) by computational fluid dynamics and the lattice Boltzmann method. The selection of the descriptors that constitute the models was carried out according to the stepwise method with backward elimination. In order to fulfill the linearity assumption, it was necessary to transform some of the descriptors by taking their natural logarithm. After removing the influential values, the regressions were analyzed by using different statistics and hypotheses testing. One of the models were able to explain the 93.3% of the variability of permeability as a function of the porous structure.","PeriodicalId":50082,"journal":{"name":"Journal of Porous Media","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138579980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convective stability of horizontal filtration flow through a closed domain of porous media with clogging 具有堵塞的多孔介质封闭区域中水平过滤流的对流稳定性
IF 2.3 4区 工程技术
Journal of Porous Media Pub Date : 2023-12-01 DOI: 10.1615/jpormedia.2023050257
Boris Maryshev, Lydmila Klimenko
{"title":"Convective stability of horizontal filtration flow through a closed domain of porous media with clogging","authors":"Boris Maryshev, Lydmila Klimenko","doi":"10.1615/jpormedia.2023050257","DOIUrl":"https://doi.org/10.1615/jpormedia.2023050257","url":null,"abstract":"The present paper is devoted to the study of horizontal filtration flow through a closed porous domain with the extraction of some impurities from the mixture by immobilizing them. Usually, the filter is damaged after some time of use because of clogging. Here, we generalize the mathematical model for immobilization and clogging. The investigation of the transition of instability modes from monotonous to oscillatory and the influence of clogging on these phenomena are presented. It is shown that the oscillatory mode is observed in long domains or at moderate intensity of the external horizontal flow. At low flow intensities, the convective cells are stationary and there is no reason for oscillations. At high intensities, the external flow suppresses the convective oscillations. It is found, that the interval of flow intensity values, in which oscillations are observed, grows with increasing domain length, and for thin domains large intensities are needed to excite the oscillatory mode. Clogging leads to the stabilization of horizontal flow with respect to convective perturbations and sometimes to the dumping of the oscillations. The critical curves and instability maps in a wide range of the problem parameters are obtained and analyzed. For the limiting cases, a comparison with the results of the well-known Horton-Rogers-Lapwood problem (HRL) has been made.","PeriodicalId":50082,"journal":{"name":"Journal of Porous Media","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138507533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local Non-Similar Solutions of Magnetohydrodynamic Casson Nanofluid Flow over a Non-Linear Inclined Surface with Thermal Radiation and Heat Generation Effects: A Utilization of upto Third Truncation 具有热辐射和热生成效应的非线性倾斜表面上的磁流体卡松纳米流体流的局部非相似解:第三次截断的利用
IF 2.3 4区 工程技术
Journal of Porous Media Pub Date : 2023-12-01 DOI: 10.1615/jpormedia.2023049654
Raheela Razzaq, Saiqa Sagheer, Umer Farooq
{"title":"Local Non-Similar Solutions of Magnetohydrodynamic Casson Nanofluid Flow over a Non-Linear Inclined Surface with Thermal Radiation and Heat Generation Effects: A Utilization of upto Third Truncation","authors":"Raheela Razzaq, Saiqa Sagheer, Umer Farooq","doi":"10.1615/jpormedia.2023049654","DOIUrl":"https://doi.org/10.1615/jpormedia.2023049654","url":null,"abstract":"The current research aims to investigate the influences of thermal radiation, heat generation and chemical reaction on the magnetohydrodynamic (MHD) Casson fluid flow model over a non-linear inclined surface. The Buongiorno model of the thermal efficiency of fluid flows in the existence of Brownian motion and Thermophoresis features served as the foundation of employed non-similar modeling. The present article uses the local-similarity assumption to solve the problem up to the third degree of truncation. The pseudo similarity parameter, stream function, and modified streamwise coordinate all satisfy the continuity equation in the same way, which transforms the energy, momentum and mass equations into a non-similar dimensionless boundary layer (BL) problem. Here generated the non-similar equations upto third level of truncation in order to compare the numerical results produced by the different iterations. The built-in MATLAB function bvp4c is used to discover numerical values to these equations. In terms of energy, velocity, and mass configuration, the effect of particular physical factors are stated; as the inclination parameter and magnetic parameter are increased the velocity outline is decreased. The velocity profile is improved when a rise in the Casson fluid factor is observed. As heat generation and absorption increases, the energy profile rises. The growth of the thermophoresis factor and chemical reaction parameter reduces the concentration profile. Mass diffusion portrays increases as the Brownian motion factor raises. Moreover, to compare the answers with various level of truncation, the relative error was also estimated.","PeriodicalId":50082,"journal":{"name":"Journal of Porous Media","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138741469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of pore structure and dynamic seepage characteristics of sedimentary rocks determined by nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) techniques 利用核磁共振(NMR)和磁共振成像(MRI)技术确定沉积岩的孔隙结构和动态渗流特征
IF 2.3 4区 工程技术
Journal of Porous Media Pub Date : 2023-12-01 DOI: 10.1615/jpormedia.2023049071
Na Zhang, Shuaidong Wang, Jiaqi Wu, Zheng Li, Fangfang Zhao
{"title":"Characterization of pore structure and dynamic seepage characteristics of sedimentary rocks determined by nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) techniques","authors":"Na Zhang, Shuaidong Wang, Jiaqi Wu, Zheng Li, Fangfang Zhao","doi":"10.1615/jpormedia.2023049071","DOIUrl":"https://doi.org/10.1615/jpormedia.2023049071","url":null,"abstract":"Understanding the pore structure and dynamic seepage features of fine-grained sedimentary rocks is necessary for the secure and efficient exploitation of coalbed methane resources. This research assessed the pore structure and dynamic seepage features of the sandstone and shale samples were investigated through innovative, dynamic nuclear magnetic resonance (NMR) T2 spectrum and magnetic resonance imaging (MRI) measurements during a series of specially designed seepage experiments with two respective fluids of different wettability (i.e., distilled water and kerosene). The seepage T2 spectra and MRI images at various times during the seepage process are discussed. Results show that sandstone and shale possess remarkably different T2 spectra. Sandstone samples' T2 spectra reveal a unique peak distribution with a range of 0.3-1000ms. The T2 spectra of shale samples exhibit a bimodal distribution, with most micropores spanning between 0.1 and 5 ms. Sandstone possesses significantly greater pore connectivity and fluid mobility than shale. The dynamic seepage experiments showed that the seepage T2 spectra of distilled water and kerosene seepage in sandstone present a bimodal distribution, and those of kerosene seepage in shale show a trimodal distribution. Meanwhile, the relationship between seepage time is sandstone kerosene seepage<sandstone water seepage <shale kerosene seepage, and the relationship between fluid volume is shale kerosene seepage <sandstone kerosene seepage <shale kerosene seepage. In addition, the fluid volumes of water and kerosene in sandstone have a strong linear relationship with time, while those of kerosene in shale have a power-function relationship.","PeriodicalId":50082,"journal":{"name":"Journal of Porous Media","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139054046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Percolation characteristics of power law fluid in the rough tree-like bifurcation networks 粗糙树状分叉网络中幂律流体的渗流特征
IF 2.3 4区 工程技术
Journal of Porous Media Pub Date : 2023-11-01 DOI: 10.1615/jpormedia.2023048703
shanshan yang, Qiong Sheng, Mingqing Zou, Mingchao Liang
{"title":"Percolation characteristics of power law fluid in the rough tree-like bifurcation networks","authors":"shanshan yang, Qiong Sheng, Mingqing Zou, Mingchao Liang","doi":"10.1615/jpormedia.2023048703","DOIUrl":"https://doi.org/10.1615/jpormedia.2023048703","url":null,"abstract":"To study the percolation characteristics of the power-law fluid in the rough tree bifurcation network, based on fractal theory, generalized Darcy's law, and constitutive equation of power-law fluid, a fractal model of permeability of power-law fluid in rough tree bifurcation network is proposed, and the total flow, total pressure drop and permeability of power-law fluid in rough tree bifurcation network are derived respectively. The analytic expression of the permeability of power-law fluid can be expressed as a function of the microstructure, power exponent, and relative roughness of the rough tree-like fractal bifurcation network. It can be seen from it that the permeability of the rough tree like fractal bifurcation network is inversely proportional to the relative roughness. At the same time, the comparison between the predicted values of the model and the existing models proves the correctness and rationality of the model.","PeriodicalId":50082,"journal":{"name":"Journal of Porous Media","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138507528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arrhenius activation energy and binary chemical reaction effects on Darcy- Forchheimer flow of radiative micropolar fluid on a stretching sheet with convective boundary condit 具有对流边界条件的辐射微极流体在拉伸薄片上Darcy- Forchheimer流动的Arrhenius活化能和二元化学反应效应
IF 2.3 4区 工程技术
Journal of Porous Media Pub Date : 2023-11-01 DOI: 10.1615/jpormedia.2023045629
Meenakumari Ramamoorthy, Sucharitha Gorintla, Lakshminarayana Pallavarapu, Kuppalapalle Vajravelu
{"title":"Arrhenius activation energy and binary chemical reaction effects on Darcy- Forchheimer flow of radiative micropolar fluid on a stretching sheet with convective boundary condit","authors":"Meenakumari Ramamoorthy, Sucharitha Gorintla, Lakshminarayana Pallavarapu, Kuppalapalle Vajravelu","doi":"10.1615/jpormedia.2023045629","DOIUrl":"https://doi.org/10.1615/jpormedia.2023045629","url":null,"abstract":"The current article explores the MHD flow of micropolar fluid over a permeable stretching surface with convective boundaries. The flow mechanism is administrated by conservation principles. By applying the suitable similarity transformation, the governing PDEs are turned out to be non-linear coupled ODEs. The resultant highly non-linear ODEs are solved numerically by the Runge-Kutta Fehlberg scheme along with the shooting technique. The performance of sundry parameters on the velocity, microrotation, temperature and concentration are discussed numerically through graphs and tables. The present results are validated by the existing literature. The present investigation is very helpful in industries and technology such as heat exchangers and the refining process of lubricants.","PeriodicalId":50082,"journal":{"name":"Journal of Porous Media","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138507571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
THE EFFECT OF COUPLE STRESSES ON STABILITY ANALYSIS OF MAGNETIZED FERROFLUID SATURATING A POROUS MEDIUM HEATED FROM BELOW 耦合应力对磁化铁磁流体饱和多孔介质稳定性分析的影响
IF 2.3 4区 工程技术
Journal of Porous Media Pub Date : 2023-11-01 DOI: 10.1615/jpormedia.2023050054
Akanksha Thakur, Sunil Kumar, Reeta Devi
{"title":"THE EFFECT OF COUPLE STRESSES ON STABILITY ANALYSIS OF MAGNETIZED FERROFLUID SATURATING A POROUS MEDIUM HEATED FROM BELOW","authors":"Akanksha Thakur, Sunil Kumar, Reeta Devi","doi":"10.1615/jpormedia.2023050054","DOIUrl":"https://doi.org/10.1615/jpormedia.2023050054","url":null,"abstract":"This work aims to inspect the impact of couple stress forces on the convective stability of magnetized ferrofluid saturating a porous medium for different combinations of bounding surfaces. Both linear and nonlinear analyses are conducted to obtain eigenvalue problems. Normal mode analysis is used for linear analysis, while the energy method is used for nonlinear analysis, and a generalized energy functional is introduced. For solving eigenvalue problems, the Galerkin method is employed. It is found that the Rayleigh numbers for the two analyses did not match, suggesting the existence of a subcritical region. Furthermore, it is observed that the subcritical region decreased as the magnetic parameter increased, whereas an increase in the couple stress parameter increased the subcritical region. The effect of medium permeability has been found to be destabilizing. For this analysis, three combinations of bounding surfaces are considered. It is also observed that fluid confined in the rigid-rigid bounding surface is more thermally stable, which is suitable for convection in ferrofluid.","PeriodicalId":50082,"journal":{"name":"Journal of Porous Media","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138507572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stress-Relaxation Behavior of Deformable Porous Shells during Passage of Power-Law fluids in Compression 幂律流体在压缩中通过可变形多孔壳的应力松弛行为
IF 2.3 4区 工程技术
Journal of Porous Media Pub Date : 2023-01-01 DOI: 10.1615/jpormedia.2023043498
Usman Ali, J. Siddique, S. Ahmed
{"title":"Stress-Relaxation Behavior of Deformable Porous Shells during Passage of Power-Law fluids in Compression","authors":"Usman Ali, J. Siddique, S. Ahmed","doi":"10.1615/jpormedia.2023043498","DOIUrl":"https://doi.org/10.1615/jpormedia.2023043498","url":null,"abstract":"","PeriodicalId":50082,"journal":{"name":"Journal of Porous Media","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67642765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NUMERICAL STUDY OF FREE CONVECTION Ag-WATER NANOFLUID FLOW IN A SQUARE ENCLOSURE WITH VISCOUS DISSIPATION AND HEAT GENERATION/ABSORPTION EFFECTS IN A POROUS MEDIUM WITH COMPLE 多孔介质中银-水纳米流体在具有粘性耗散和热生成/吸收效应的方形壁面内自由对流流动的数值研究
IF 2.3 4区 工程技术
Journal of Porous Media Pub Date : 2023-01-01 DOI: 10.1615/jpormedia.2023044454
Ramachandra Prasad
{"title":"NUMERICAL STUDY OF FREE CONVECTION Ag-WATER NANOFLUID FLOW IN A SQUARE ENCLOSURE WITH VISCOUS DISSIPATION AND HEAT GENERATION/ABSORPTION EFFECTS IN A POROUS MEDIUM WITH COMPLE","authors":"Ramachandra Prasad","doi":"10.1615/jpormedia.2023044454","DOIUrl":"https://doi.org/10.1615/jpormedia.2023044454","url":null,"abstract":"","PeriodicalId":50082,"journal":{"name":"Journal of Porous Media","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67643301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信