Journal of Porous Media最新文献

筛选
英文 中文
Non-Darcy Bioconvective Flow of the Ree-Eyring Ternary-Hybrid Nanofluid over a Stretching Sheet with Velocity and Thermal Slips: Entropy Analysis 具有速度和热滑移的拉伸片上的 Ree-Eyring 三元混合纳米流体的非达西生物对流:熵分析
IF 2.3 4区 工程技术
Journal of Porous Media Pub Date : 2024-07-01 DOI: 10.1615/jpormedia.2024052723
Hossam Nabwey, Waqar A. Khan, zeinab Abdelrahman, Ahmed M. Rashad, Miad Abu Hawsah
{"title":"Non-Darcy Bioconvective Flow of the Ree-Eyring Ternary-Hybrid Nanofluid over a Stretching Sheet with Velocity and Thermal Slips: Entropy Analysis","authors":"Hossam Nabwey, Waqar A. Khan, zeinab Abdelrahman, Ahmed M. Rashad, Miad Abu Hawsah","doi":"10.1615/jpormedia.2024052723","DOIUrl":"https://doi.org/10.1615/jpormedia.2024052723","url":null,"abstract":"The present paper proposes the mathematical model for non-Newtonian\u0000fluid (Ree-Eyring model) towards a stretched sheet with the porous medium by considering the gyrotactic microorganisms and the inclined magnetic field. The composite of Al_2 O_3,Ag,and Ti O_2 in water is called ternary-hybrid nanofluid (THNF), while the composite relation among Al_2 O_3,Ag in water is known as hybrid nanofluid (HNF), and Al_2 O_3 in water is the nanofluid (NF).The Buongiorno model is used inflow modeling to investigate thermophoresis and Brownian motion. The appropriate transformations are implemented to transform governing partial differential equations into coupled nonlinear ordinary differential equations by similarity transformation. The mathematical model is converted to ODEs using suitable similarity transformation. The bvp4c function in MATLAB is used to solve boundary value problems (BVPs) for systems of ordinary differential equations (ODEs). It is part of the MATLAB's Boundary Value Problems (BVP) solver suite. The effects of the physical parameters on the dimensionless variables and quantities of physical interest are analyzed with the aid of figures. It is demonstrated that ternary hybrid nanofluids provide the highest heat transfer rate at the cost of skin friction and offer the lowest Bejan number and entropy generation rates. They also reduce mass and microorganisms transfer rates. Furthermore, magnetic field, local inertia, Eckert number, and thermal slip reduce the Bejan number by promoting more efficient heat transfer.","PeriodicalId":50082,"journal":{"name":"Journal of Porous Media","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141548556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on data inversion process of gas pressure-oscillation method for low permeability testing in porous media 用于多孔介质低渗透性测试的气体压力-振荡法数据反演过程研究
IF 2.3 4区 工程技术
Journal of Porous Media Pub Date : 2024-07-01 DOI: 10.1615/jpormedia.2024052329
Wei Wang, Diansen Yang, Xing Wang, Yijie Liu, Zecheng Chi
{"title":"Research on data inversion process of gas pressure-oscillation method for low permeability testing in porous media","authors":"Wei Wang, Diansen Yang, Xing Wang, Yijie Liu, Zecheng Chi","doi":"10.1615/jpormedia.2024052329","DOIUrl":"https://doi.org/10.1615/jpormedia.2024052329","url":null,"abstract":"The pressure-oscillation method is a relatively new experimental approach for evaluating the seepage characteristics of porous media. It allows for simultaneous measurement of permeability and porosity, while offering several advantages, including flexibility, automation, and data re-peatability. However, there has been limited research on the data inversion process using this method. In this study, a data inversion process is proposed based on the theoretical solution proposed by Fischer (1992). The reliability and accuracy of the method are verified through synthetic signals and computation cases. The data inversion process involves two steps: processing the gas pres-sure data using fast Fourier transform and local extreme value locate to obtain the amplitude ratio and phase delay, and calcu-lating intermediate parameters that relate to gas apparent permeability and effective porosity using graphical and numerical root-finding algorithm. The calculation process is simplified by not calculating one complex intermediate parameter. The data inversion process is demonstrated using 11 computation cases, showing its intuitive nature, fast computation, deterministic results, and high accuracy. The impact of various factors on the gas pressure variations of downstream reservoir is analyzed through case analysis. This study can serve as a valuable reference for de-signing experiments using the gas pressure-oscillation method.","PeriodicalId":50082,"journal":{"name":"Journal of Porous Media","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141740191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoparticle shape factor analysis on radiative ternary nanofluid (MWCNT-Cu-SiO2/H2O) flow with non-Fourier thermal flux 具有非傅里叶热通量的辐射三元纳米流体(MWCNT-Cu-SiO2/H2O)流动的纳米粒子形状因子分析
IF 2.3 4区 工程技术
Journal of Porous Media Pub Date : 2024-06-01 DOI: 10.1615/jpormedia.2024051855
Madiha Takreem Kottur, Venkata Satya Narayana Panyam
{"title":"Nanoparticle shape factor analysis on radiative ternary nanofluid (MWCNT-Cu-SiO2/H2O) flow with non-Fourier thermal flux","authors":"Madiha Takreem Kottur, Venkata Satya Narayana Panyam","doi":"10.1615/jpormedia.2024051855","DOIUrl":"https://doi.org/10.1615/jpormedia.2024051855","url":null,"abstract":"The ternary hybrid nanofluid flow comprising multi-walled carbon nanotube, copper, and\u0000silicon dioxide dispersed in a host fluid of water in a Darcy-Forchheimer medium past an\u0000elongated surface is deliberated in the current study. The novelty of the contemplated model is\u0000developed by incorporating the influences of mixed convection in the momentum equation and\u0000heat source and Cattaneo-Christov thermal flux in the energy equation. Shape factor analysis\u0000of the nanoparticles is also performed to calculate the thermal efficacy. An application of the\u0000appropriate similarity variables is made to transmute the governing system of PDEs into an\u0000ordinary differential system, whose numeric solution is determined by the bvp4c package in\u0000MATLAB. The outcome drawn in this study is that the ternary hybrid nanofluid MWCNT-Cu-SiO2/H2O can provide effective thermal transmission efficiency compared\u0000to Cu-SiO2/H2O hybrid nanofluid. Additionally, the lamina-shaped nanoparticles seem to\u0000exhibit an improved thermal profile and greater heat transmission rate than platelets shaped\u0000ones. Moreover, a comparison table is included to authenticate the present model and a great\u0000correlation is attained.","PeriodicalId":50082,"journal":{"name":"Journal of Porous Media","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating Heat Transfer Enhancement Using Metal Foam in Double Tube Heat Exchangers-Experimental Approach 研究在双管热交换器中使用金属泡沫增强传热--实验法
IF 2.3 4区 工程技术
Journal of Porous Media Pub Date : 2024-06-01 DOI: 10.1615/jpormedia.2024052929
Aniket Dhavale, Mandar lele
{"title":"Investigating Heat Transfer Enhancement Using Metal Foam in Double Tube Heat Exchangers-Experimental Approach","authors":"Aniket Dhavale, Mandar lele","doi":"10.1615/jpormedia.2024052929","DOIUrl":"https://doi.org/10.1615/jpormedia.2024052929","url":null,"abstract":"This study addresses the imperative requirement for efficient utilization of solar energy by examining the incorporation of metal foam heat exchangers into solar flat plate collectors, with a focus on enhancing their thermal performance. The primary objective of this study is to experimentally evaluate single-phase double-tube heat exchangers with and without the incorporation of metal foam in the annular space. By conducting experiments with hot and cold water at various flow rates, the research aims to assess the impact of metal foam on key parameters such as heat transfer coefficient, Nusselt number, Reynolds number, effectiveness, and pressure drop. Furthermore, the study compares the experimental results with established correlations from existing literature. The experiments are performed with hot and cold water at different flow rates of 25 liters per hour and (25-50) liters per hour at 650C and room temperature, respectively. Nickel metal foam with 10 Pores Per Inch and 0.9 porosity is fitted in the annular space. The results of the study indicate that the incorporation of metal foam leads to a significant improvement in heat transfer performance, up to 2.2 times compared to a traditional heat exchanger. However, this enhancement in heat transfer comes at the cost of increased pressure drop across the metal foam heat exchanger. The investigation is significant as it offers insights into the potential of metal foam to improve heat exchanger performance. Therefore, the research highlights the existence of a trade-off between heat transfer efficiency and pressure drop when designing double-tube heat exchangers with metal foam. This work provides valuable insights into","PeriodicalId":50082,"journal":{"name":"Journal of Porous Media","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Legendre wavelet collocation method to simulate the effect of linear and exponential heat source/sink on AA7072-AA7075/EG-H2O flow over a stretching sheet with Cattaneo-Christov model 用 Cattaneo-Christov 模型模拟线性和指数热源/热沉对拉伸片上 AA7072-AA7075/EG-H2O 流动的影响的 Legendre 小波配位法
IF 2.3 4区 工程技术
Journal of Porous Media Pub Date : 2024-06-01 DOI: 10.1615/jpormedia.2024052183
TANYA GUPTA, Manoj Kumar
{"title":"Legendre wavelet collocation method to simulate the effect of linear and exponential heat source/sink on AA7072-AA7075/EG-H2O flow over a stretching sheet with Cattaneo-Christov model","authors":"TANYA GUPTA, Manoj Kumar","doi":"10.1615/jpormedia.2024052183","DOIUrl":"https://doi.org/10.1615/jpormedia.2024052183","url":null,"abstract":"This research presents a semi-analytical method for investigating the heat transfer of a hybrid nanofluid over an inclined porous stretched sheet under the influence of a magnetic field, non-linear radiation, linear and exponential heat source/sink with convective heating, and slip condition. For assessing the thermal propagation time, the Cattaneo-Christov model is used. The Legendre wavelet collocation technique (LWCT) was used, which employs an operational matrix of integration (OMI) and is capable of producing more accurate findings than other approaches. The hybrid nanofluid is made up of nanoparticles AA7072 and AA7075, as well as ethylene glycol and water (50%-50%) as the base fluid. The heat transfer enhancement is determined to be 19.46% when the volume fraction is increased from 2% to 10%. It is also clear that the thermal relaxation parameter reduces the thermal profile, whereas linear and exponential heat sources improve it. It is also noted that the velocity profile for the horizontal sheet decreases with volume fraction but increases for the vertical sheet.","PeriodicalId":50082,"journal":{"name":"Journal of Porous Media","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NONLINEAR DOUBLE-DIFFUSIVE CONVECTION IN AN ANISOTROPIC POROUS LAYER UNDER TIME-DEPENDENT ROTATION WITH INTERNAL HEATING AND SORET EFFECT 各向异性多孔层在随时间变化的旋转条件下的非线性双扩散对流与内部加热和索氏效应
IF 2.3 4区 工程技术
Journal of Porous Media Pub Date : 2024-06-01 DOI: 10.1615/jpormedia.2024052416
Samah. A Ali, Precious Sibanda, Munyaradzi Rudziva, Osman A.I Noreldin, Sicelo P. Goqo, Hloniphile S. Mthethwa
{"title":"NONLINEAR DOUBLE-DIFFUSIVE CONVECTION IN AN ANISOTROPIC POROUS LAYER UNDER TIME-DEPENDENT ROTATION WITH INTERNAL HEATING AND SORET EFFECT","authors":"Samah. A Ali, Precious Sibanda, Munyaradzi Rudziva, Osman A.I Noreldin, Sicelo P. Goqo, Hloniphile S. Mthethwa","doi":"10.1615/jpormedia.2024052416","DOIUrl":"https://doi.org/10.1615/jpormedia.2024052416","url":null,"abstract":"The study investigates the double-diffusive convection onset in a non-uniformly rotating anisotropic porous fluid layer under the influence of Soret and internal heating effects. The linear stability approach is employed to investigate the system when subjected to infinitesimal perturbations. The nonlinear case is investigated using a minimum truncated\u0000double Fourier series, leading to the derivation of nonlinear Lorenz-type equations. To solve these coupled equations,\u0000a local quasilinearization block hybrid method (LQBHM) is utilized. The analysis shows that the stability of the fluid system is dependent on the values of the Soret coefficient, rotation parameter, anisotropy parameters, and internal heating. Among other results, it was observed that the rotation and thermal anisotropy parameters have stabilizing effects on the fluid system. Additionally, the rotation modulation amplitude increases the rates of heat and mass transfer and so advances the onset of convection in the fluid system, whereas the modulation frequency has the opposite effect.","PeriodicalId":50082,"journal":{"name":"Journal of Porous Media","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MATHEMATICAL RANDOM GENERATION OF METAL FOAM AND NUMERICAL 3D SIMULATIONS OF HEAT TRANSFER IN A HYBRID SOLAR COLLECTOR 金属泡沫的数学随机生成和混合太阳能集热器传热的 3D 数值模拟
IF 2.3 4区 工程技术
Journal of Porous Media Pub Date : 2024-06-01 DOI: 10.1615/jpormedia.2024052398
syrine khadhrawi, haikel ben hamed, fakhreddine segni oueslati
{"title":"MATHEMATICAL RANDOM GENERATION OF METAL FOAM AND NUMERICAL 3D SIMULATIONS OF HEAT TRANSFER IN A HYBRID SOLAR COLLECTOR","authors":"syrine khadhrawi, haikel ben hamed, fakhreddine segni oueslati","doi":"10.1615/jpormedia.2024052398","DOIUrl":"https://doi.org/10.1615/jpormedia.2024052398","url":null,"abstract":"The primary motive of the study is to explore numerically the heat transfer a hybrid solar collector, which is a partially filled Cartesian channel with random generated Metal Foam (MF). The channel is subjected to solar irradiation, and through it the air flows.To generate the MF, random Gaussian correlations are used. This technique allows spatial control of density, permeability, and porosity, whose values are also theoretically accessible. To solve the equations of fluid dynamics and heat transfer, a finite volume multigrid scheme is used. Energy equation is framed on the two temperatures model, and momentum equation is that of the clear fluid case, since the pore’s volumes are largely greater than the VER in the porous media. Thevelocity as well as temperature fields are discussed for different pertinent parameters, and mathematic correlations are given between the Nusselt, the porosity, the Richardson and the Reynolds numbers. It is found that beyond two blocks, it is useless to add MF because we reach higher homogeneity in temperature and good efficiency in heat transfer. It is also found that the two temperatures model is very realisticthan models with averaged properties, and gives wide range of perspectivesthanks to the possibility of carrying out numerical and experimental investigations onthe same MF model: randomly generated and printable in 3D","PeriodicalId":50082,"journal":{"name":"Journal of Porous Media","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wastewater Pollutant Discharge Concentration Effect on Non-Newtonian Hybrid Nanofluid Flow across a Riga Sheet: Numerical Exploration 污水污染物排放浓度对里加片非牛顿混合纳米流体流动的影响:数值探索
IF 2.3 4区 工程技术
Journal of Porous Media Pub Date : 2024-05-01 DOI: 10.1615/jpormedia.2024052654
Muhammad Bilal, Saif Ullah, Almetwally M. Mostafa, Nouf F. AlQahtani, Shuo Li
{"title":"Wastewater Pollutant Discharge Concentration Effect on Non-Newtonian Hybrid Nanofluid Flow across a Riga Sheet: Numerical Exploration","authors":"Muhammad Bilal, Saif Ullah, Almetwally M. Mostafa, Nouf F. AlQahtani, Shuo Li","doi":"10.1615/jpormedia.2024052654","DOIUrl":"https://doi.org/10.1615/jpormedia.2024052654","url":null,"abstract":"Wastewater disposal plays an important role in several sectors of industry and environmental systems. The objective of the present research is to avoid and monitor pollutants discharge in the pure water resource. For the purpose, the influence of PDC (pollutant discharge concentration) on the non-Newtonian hybrid nanofluids (NNNF) flow across a porous surface of Riga sheet is examined. The two different types of NNNF (second-grade and Walter’s B fluids) have been considered. The copper (Cu) and iron oxide (Fe3O4) nanoparticles (NPs) are used in the base fluid Sodium Alginate (C6H9NaO7) to prepare the hybrid nanofluid. The NNNF flow is designed in form of nonlinear system of partial differential equations (PDEs), which are simplified to dimensionless form of ordinary differential equations by using similarity transformation and then numerically handled through the parametric continuation method (PCM). The numerical results of the proposed model are compared with the published literature for the limiting case. The present results reveal higher similarity with the existing study. From the graphical results, it can be observed that the fluid temperature drops with the variation of Cu and Fe3O4-NPs. The influence of external pollutant factor enhances the concentration of pollutants in case of both fluids. Furthermore, the rising quantity of Cu and Fe3O4 NPs in Sodium Alginate based hybrid nanofluid, the energy transfer rate enhances form 3.79% to 8.25%, in case of Second-Grade hybrid nanofluid and 3.88% to 9.86% in case of Walter’s B hybrid nanofluid respectively.","PeriodicalId":50082,"journal":{"name":"Journal of Porous Media","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141153552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Case Study: Depth Impact on Recovery of Immiscible Gas Injection in an Iranian Undersaturated Oil Reservoir 案例研究:伊朗未饱和油藏不相溶气体注入深度对采收率的影响
IF 2.3 4区 工程技术
Journal of Porous Media Pub Date : 2024-05-01 DOI: 10.1615/jpormedia.2024052247
Sepideh Zobeidi
{"title":"A Case Study: Depth Impact on Recovery of Immiscible Gas Injection in an Iranian Undersaturated Oil Reservoir","authors":"Sepideh Zobeidi","doi":"10.1615/jpormedia.2024052247","DOIUrl":"https://doi.org/10.1615/jpormedia.2024052247","url":null,"abstract":"In saturated oil reservoirs, the pressure of the reservoir is gradually reduced with production of oil, and this ultimately leads to gas production of the reservoir and formation of a gas cap. After the period of natural depletion from oil reservoirs, it is necessary to use secondary and then tertiary methods of EOR. One of the most common methods (if gas is available) is gas injection. By injecting gas, while pressure maintenance and re-pressuring to initial pressure of the reservoir, the recovery factor increases. This increase in recovery factor mainly occurs due to maintenance or increase in pressure and decrease in interfacial tension (IFT) and viscosity.\u0000In Iran, except in one of the fields where gas injection is done with the aim of miscible gas injection, other gas injection projects are done with the aim of pressure maintenance. In these projects, the proper place for injection is not taken into consideration and the gas is done in the highest part of the reservoir, the question was raised at what depth the gas injection should be done to be optimal. Therefore, one of the reservoirs in the south of Iran was selected and a feasibility study was conducted with the aim of determining the most suitable injection point.\u0000In this study, the issue of the appropriate place for gas injection from the point of view of whether it is in the gas cap, in the middle of the production column, or at near the water/oil contact has been investigated and the results have been presented. Also it is approved that the injection in saturated reservoir has more recovery factor than under saturated reservoir. Finally, injection near water/oil contact is known as the preferred option.","PeriodicalId":50082,"journal":{"name":"Journal of Porous Media","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140935892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Instability of thermosolutal convection in a Brinkman-Darcy-Kelvin-Voigt fluid 布林克曼-达西-开尔文-伏依格特流体中的热固性对流的不稳定性
IF 2.3 4区 工程技术
Journal of Porous Media Pub Date : 2024-05-01 DOI: 10.1615/jpormedia.2024050970
Zaid Abbas Afluk, Akil Harfash
{"title":"Instability of thermosolutal convection in a Brinkman-Darcy-Kelvin-Voigt fluid","authors":"Zaid Abbas Afluk, Akil Harfash","doi":"10.1615/jpormedia.2024050970","DOIUrl":"https://doi.org/10.1615/jpormedia.2024050970","url":null,"abstract":"In this article, we investigate the problem of thermosolutal convection occurring in a Brinkman-Darcy-Kelvin-Voigt fluid. This phenomenon takes place when a layer is heated from beneath while also being exposed to salt either from the upper or lower side. Both linear instability and conditional nonlinear stability analyses are applied in this study. The linear and nonlinear systems have been solved using Chebyshev collocation technique and the QZ algorithm. The computation of instability boundaries is undertaken for the occurrence of thermosolutal convection in a fluid containing dissolved salt, where the fluid is of a complex viscoelastic nature resembling the Navier-Stokes-Voigt type. Notably, the Kelvin-Voigt parameter emerges as a critical factor in maintaining stability, particularly for oscillatory convection. In instances where the layer is heated from below and salted from above, the thresholds of stability align with those of instability, substantiating the appropriateness of the linear theory in predicting the thresholds for convection initiation. Conversely, when the layer is subjected to salting from the bottom while being heated, the thresholds of stability remain constant even with variations in the salt Rayleigh number. This leads to a significant disparity between the thresholds of linear instability and those of nonlinear stability.","PeriodicalId":50082,"journal":{"name":"Journal of Porous Media","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141166128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信