Semigroup ForumPub Date : 2023-11-08DOI: 10.1007/s00233-023-10390-x
Gracinda M. S. Gomes, Ana-Catarina C. Monteiro
{"title":"Formations of orthodox semigroups","authors":"Gracinda M. S. Gomes, Ana-Catarina C. Monteiro","doi":"10.1007/s00233-023-10390-x","DOIUrl":"https://doi.org/10.1007/s00233-023-10390-x","url":null,"abstract":"","PeriodicalId":49549,"journal":{"name":"Semigroup Forum","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135340668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Semigroup ForumPub Date : 2023-11-08DOI: 10.1007/s00233-023-10395-6
Sin-Ei Takahasi
{"title":"Homeomorphism groups on the positive real numbers defined by binary operations","authors":"Sin-Ei Takahasi","doi":"10.1007/s00233-023-10395-6","DOIUrl":"https://doi.org/10.1007/s00233-023-10395-6","url":null,"abstract":"","PeriodicalId":49549,"journal":{"name":"Semigroup Forum","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135340667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Semigroup ForumPub Date : 2023-11-03DOI: 10.1007/s00233-023-10397-4
Peter M. Higgins, Marcel Jackson
{"title":"Equationally defined classes of semigroups","authors":"Peter M. Higgins, Marcel Jackson","doi":"10.1007/s00233-023-10397-4","DOIUrl":"https://doi.org/10.1007/s00233-023-10397-4","url":null,"abstract":"Abstract We apply, in the context of semigroups, the main theorem from the authors’ paper “Algebras defined by equations” (Higgins and Jackson in J Algebra 555:131–156, 2020) that an elementary class $${mathscr {C}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> of algebras which is closed under the taking of direct products and homomorphic images is defined by systems of equations. We prove a dual to the Birkhoff theorem in that if the class is also closed under the taking of containing semigroups, some basis of equations of $${mathscr {C}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> is free of the $$forall $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>∀</mml:mo> </mml:math> quantifier. We also observe the decidability of the class of equation systems satisfied by semigroups, via a link to systems of rationally constrained equations on free semigroups. Examples are given of EHP-classes for which neither $$(forall cdots )(exists cdots )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>∀</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>)</mml:mo> <mml:mo>(</mml:mo> <mml:mo>∃</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> equation systems nor $$(exists cdots )(forall cdots )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>∃</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>)</mml:mo> <mml:mo>(</mml:mo> <mml:mo>∀</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> systems suffice.","PeriodicalId":49549,"journal":{"name":"Semigroup Forum","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135819090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Semigroup ForumPub Date : 2023-10-31DOI: 10.1007/s00233-023-10396-5
Ilinka Dimitrova, Vítor H. Fernandes, Jörg Koppitz, Teresa M. Quinteiro
{"title":"Presentations for three remarkable submonoids of the dihedral inverse monoid on a finite set","authors":"Ilinka Dimitrova, Vítor H. Fernandes, Jörg Koppitz, Teresa M. Quinteiro","doi":"10.1007/s00233-023-10396-5","DOIUrl":"https://doi.org/10.1007/s00233-023-10396-5","url":null,"abstract":"","PeriodicalId":49549,"journal":{"name":"Semigroup Forum","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135808250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Semigroup ForumPub Date : 2023-10-19DOI: 10.1007/s00233-023-10393-8
George Fikioris, Giannis Fikioris
{"title":"An extension to “A subsemigroup of the rook monoid”","authors":"George Fikioris, Giannis Fikioris","doi":"10.1007/s00233-023-10393-8","DOIUrl":"https://doi.org/10.1007/s00233-023-10393-8","url":null,"abstract":"Abstract A recent paper studied an inverse submonoid $$M_{n}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:math> of the rook monoid, by representing the nonzero elements of $$M_{n}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:math> via certain triplets belonging to $${mathbb {Z}}^3$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>Z</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:math> . In this note, we allow the triplets to belong to $${mathbb {R}}^3$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:math> . We thus study a new inverse monoid $$overline{M}_{n}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mover> <mml:mi>M</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> <mml:mi>n</mml:mi> </mml:msub> </mml:math> , which is a supermonoid of $$M_{n}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:math> . We point out similarities and find essential differences. We show that $$overline{M}_{n}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mover> <mml:mi>M</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> <mml:mi>n</mml:mi> </mml:msub> </mml:math> is a noncommutative, periodic, combinatorial, fundamental, completely semisimple, and strongly $${E}^{*}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>E</mml:mi> </mml:mrow> <mml:mrow> <mml:mrow /> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msup> </mml:math> -unitary inverse monoid.","PeriodicalId":49549,"journal":{"name":"Semigroup Forum","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135728952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Semigroup ForumPub Date : 2023-10-17DOI: 10.1007/s00233-023-10392-9
Becky Armstrong, Jonathan H. Brown, Lisa Orloff Clark, Kristin Courtney, Ying-Fen Lin, Kathryn McCormick, Jacqui Ramagge
{"title":"The local bisection hypothesis for twisted groupoid C*-algebras","authors":"Becky Armstrong, Jonathan H. Brown, Lisa Orloff Clark, Kristin Courtney, Ying-Fen Lin, Kathryn McCormick, Jacqui Ramagge","doi":"10.1007/s00233-023-10392-9","DOIUrl":"https://doi.org/10.1007/s00233-023-10392-9","url":null,"abstract":"Abstract In this note, we present criteria that are equivalent to a locally compact Hausdorff groupoid G being effective. One of these conditions is that G satisfies the C*-algebraic local bisection hypothesis ; that is, that every normaliser in the reduced twisted groupoid C*-algebra is supported on an open bisection. The semigroup of normalisers plays a fundamental role in our proof, as does the semigroup of normalisers in cyclic group C*-algebras.","PeriodicalId":49549,"journal":{"name":"Semigroup Forum","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135994346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Semigroup ForumPub Date : 2023-10-02DOI: 10.1007/s00233-023-10387-6
Fabián Arias, Jerson Borja, Calixto Rhenals
{"title":"The Frobenius problem for numerical semigroups generated by sequences of the form $$ca^n-d$$","authors":"Fabián Arias, Jerson Borja, Calixto Rhenals","doi":"10.1007/s00233-023-10387-6","DOIUrl":"https://doi.org/10.1007/s00233-023-10387-6","url":null,"abstract":"","PeriodicalId":49549,"journal":{"name":"Semigroup Forum","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135829067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Semigroup ForumPub Date : 2023-10-01DOI: 10.1007/s00233-023-10388-5
Bin Bin Han, Wen Ting Zhang, Yan Feng Luo, Jin Xing Zhao
{"title":"Representations and identities of Baxter monoids with involution","authors":"Bin Bin Han, Wen Ting Zhang, Yan Feng Luo, Jin Xing Zhao","doi":"10.1007/s00233-023-10388-5","DOIUrl":"https://doi.org/10.1007/s00233-023-10388-5","url":null,"abstract":"","PeriodicalId":49549,"journal":{"name":"Semigroup Forum","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135708105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Semigroup ForumPub Date : 2023-10-01DOI: 10.1007/s00233-023-10385-8
Felix Gotti, Joseph Vulakh
{"title":"On the atomic structure of torsion-free monoids","authors":"Felix Gotti, Joseph Vulakh","doi":"10.1007/s00233-023-10385-8","DOIUrl":"https://doi.org/10.1007/s00233-023-10385-8","url":null,"abstract":"Abstract Let M be a cancellative and commutative (additive) monoid. The monoid M is atomic if every non-invertible element can be written as a sum of irreducible elements, which are also called atoms. Also, M satisfies the ascending chain condition on principal ideals (ACCP) if every increasing sequence of principal ideals (under inclusion) becomes constant from one point on. In the first part of this paper, we characterize torsion-free monoids that satisfy the ACCP as those torsion-free monoids whose submonoids are all atomic. A submonoid of the nonnegative cone of a totally ordered abelian group is often called a positive monoid. Every positive monoid is clearly torsion-free. In the second part of this paper, we study the atomic structure of certain classes of positive monoids.","PeriodicalId":49549,"journal":{"name":"Semigroup Forum","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134934169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}