Siberian Mathematical Journal最新文献

筛选
英文 中文
The Riesz–Zygmund Sums of Fourier–Chebyshev Rational Integral Operators and Their Approximation Properties 傅里叶-切比雪夫有理积分算子的里兹-齐格蒙德和及其近似性质
IF 0.5 4区 数学
Siberian Mathematical Journal Pub Date : 2024-01-01 DOI: 10.1134/s0037446624010129
{"title":"The Riesz–Zygmund Sums of Fourier–Chebyshev Rational Integral Operators and Their Approximation Properties","authors":"","doi":"10.1134/s0037446624010129","DOIUrl":"https://doi.org/10.1134/s0037446624010129","url":null,"abstract":"<h3>Abstract</h3> <p>Studying the approximation properties of a certain Riesz–Zygmund sum of Fourier–Chebyshev rational integral operators with constraints on the number of geometrically distinct poles, we obtain an integral expression of the operators. We find upper bounds for pointwise and uniform approximations to the function <span> <span>( |x|^{s} )</span> </span> with <span> <span>( sin(0,2) )</span> </span> on the segment <span> <span>( [-1,1] )</span> </span>, an asymptotic expression for the majorant of uniform approximations, and the optimal values of the parameter of the approximant providing the greatest decrease rate of the majorant. We separately study the approximation properties of the Riesz–Zygmund sums for Fourier–Chebyshev polynomial series, establish an asymptotic expression for the Lebesgue constants, and estimate approximations to <span> <span>( fin H^{(gamma)}[-1,1] )</span> </span> and <span> <span>( gammain(0,1] )</span> </span> as well as pointwise and uniform approximations to the function <span> <span>( |x|^{s} )</span> </span> with <span> <span>( sin(0,2) )</span> </span>.</p>","PeriodicalId":49533,"journal":{"name":"Siberian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139769629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finite Groups with $ S $-Conditionally Permutable Schmidt Subgroups 具有 $ S $ 条件可变施密特子群的有限群
IF 0.5 4区 数学
Siberian Mathematical Journal Pub Date : 2024-01-01 DOI: 10.1134/s0037446624010075
S. Kamornikov, V. N. Tyutyanov, O. Shemetkova
{"title":"Finite Groups with $ S $-Conditionally Permutable Schmidt Subgroups","authors":"S. Kamornikov, V. N. Tyutyanov, O. Shemetkova","doi":"10.1134/s0037446624010075","DOIUrl":"https://doi.org/10.1134/s0037446624010075","url":null,"abstract":"","PeriodicalId":49533,"journal":{"name":"Siberian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140521175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boolean Valued Analysis of Banach Spaces 巴拿赫空间的布尔值分析
IF 0.5 4区 数学
Siberian Mathematical Journal Pub Date : 2024-01-01 DOI: 10.1134/s0037446624010178
{"title":"Boolean Valued Analysis of Banach Spaces","authors":"","doi":"10.1134/s0037446624010178","DOIUrl":"https://doi.org/10.1134/s0037446624010178","url":null,"abstract":"<h3>Abstract</h3> <p>We implement the Boolean valued analysis of Banach spaces. The realizations of Banach spaces in a Boolean valued universe are lattice normed spaces. We present the basic techniques of studying these objects as well as the Boolean valued approach to injective Banach lattices.</p>","PeriodicalId":49533,"journal":{"name":"Siberian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139769794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Admissibility and Unification in the Modal Logics Related to S4.2 与 S4.2 有关的模态逻辑中的可接受性和统一性
IF 0.5 4区 数学
Siberian Mathematical Journal Pub Date : 2024-01-01 DOI: 10.1134/s0037446624010154
{"title":"Admissibility and Unification in the Modal Logics Related to S4.2","authors":"","doi":"10.1134/s0037446624010154","DOIUrl":"https://doi.org/10.1134/s0037446624010154","url":null,"abstract":"<h3>Abstract</h3> <p>We study unification and admissibility for an infinite class of modal logics. Conditions superimposed to these logics are to be decidable, Kripke complete, and generated by the classes of rooted frames possessing the greatest clusters of states (in particular, these logics extend modal logic S4.2). Given such logic <span> <span>( L )</span> </span> and each formula <span> <span>( alpha )</span> </span> unifiable in <span> <span>( L )</span> </span>, we construct a unifier <span> <span>( sigma )</span> </span> for <span> <span>( alpha )</span> </span> in <span> <span>( L )</span> </span>, where <span> <span>( sigma )</span> </span> verifies admissibility in <span> <span>( L )</span> </span> of arbitrary inference rules <span> <span>( alpha/beta )</span> </span> with a switched-modality conclusions <span> <span>( beta )</span> </span> (i.e., <span> <span>( sigma )</span> </span> solves the admissibility problem for such rules).</p>","PeriodicalId":49533,"journal":{"name":"Siberian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139769981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Existence of Radially Symmetric Solutions for the $ p $ -Laplace Equation with Strong Gradient Nonlinearities 强梯度非线性$ p $ -Laplace方程径向对称解的存在性
IF 0.5 4区 数学
Siberian Mathematical Journal Pub Date : 2023-11-24 DOI: 10.1134/s0037446623060162
Ar. S. Tersenov
{"title":"On the Existence of Radially Symmetric Solutions for the $ p $ -Laplace Equation with Strong Gradient Nonlinearities","authors":"Ar. S. Tersenov","doi":"10.1134/s0037446623060162","DOIUrl":"https://doi.org/10.1134/s0037446623060162","url":null,"abstract":"<p>We consider the Dirichlet problem for the <span>( p )</span>-Laplace equation\u0000in presence of a gradient not satisfying the Bernstein–Nagumo type condition.\u0000We define some class of gradient nonlinearities,\u0000for which we prove the existence of a radially symmetric solution with a Hölder continuous derivative.</p>","PeriodicalId":49533,"journal":{"name":"Siberian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138507163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finite Time Stabilization to Zero and Exponential Stability of Quasilinear Hyperbolic Systems 拟线性双曲型系统的有限时间镇定及指数稳定性
IF 0.5 4区 数学
Siberian Mathematical Journal Pub Date : 2023-11-24 DOI: 10.1134/s0037446623060101
N. A. Lyul’ko
{"title":"Finite Time Stabilization to Zero and Exponential Stability of Quasilinear Hyperbolic Systems","authors":"N. A. Lyul’ko","doi":"10.1134/s0037446623060101","DOIUrl":"https://doi.org/10.1134/s0037446623060101","url":null,"abstract":"<p>We consider the asymptotic properties of solutions to the mixed problems\u0000for the quasilinear nonautonomous first-order hyperbolic systems with\u0000two variables in the case of smoothing boundary conditions.\u0000We prove that all smooth solutions to the problem for a decoupled hyperbolic system\u0000stabilize to zero in finite time independently of the initial data.\u0000If the hyperbolic system is coupled then we show that\u0000the zero solution to the quasilinear problem is exponentially stable.</p>","PeriodicalId":49533,"journal":{"name":"Siberian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138543770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Locally Finite Subgroups in  $ operatorname{Lim}(N) $ $ operatorname{Lim}(N) $中的局部有限子群
IF 0.5 4区 数学
Siberian Mathematical Journal Pub Date : 2023-11-24 DOI: 10.1134/s0037446623060150
N. M. Suchkov, A. A. Shlepkin
{"title":"On Locally Finite Subgroups in  $ operatorname{Lim}(N) $","authors":"N. M. Suchkov, A. A. Shlepkin","doi":"10.1134/s0037446623060150","DOIUrl":"https://doi.org/10.1134/s0037446623060150","url":null,"abstract":"<p>Let <span>( G )</span> be the group of all limited permutations of the naturals <span>( N )</span>.\u0000We prove that every countable locally finite group is isomorphic to a subgroup in <span>( G )</span>.</p>","PeriodicalId":49533,"journal":{"name":"Siberian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138533202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regularization of a Distribution Holomorphic in a Parameter 参数全纯分布的正则化
IF 0.5 4区 数学
Siberian Mathematical Journal Pub Date : 2023-11-24 DOI: 10.1134/s0037446623060137
A. L. Pavlov
{"title":"Regularization of a Distribution Holomorphic in a Parameter","authors":"A. L. Pavlov","doi":"10.1134/s0037446623060137","DOIUrl":"https://doi.org/10.1134/s0037446623060137","url":null,"abstract":"<p>We give sufficient conditions for regularizing a distribution of the form\u0000<span>( a(sigma,lambda)f(lambda) )</span>,\u0000where\u0000<span>( f(lambda) )</span>\u0000is a distribution holomorphic in the parameter <span>( lambda )</span>,\u0000while <span>( a(sigma,lambda) )</span>\u0000is an infinitely differentiable function of <span>( sigma )</span>\u0000outside some closed set <span>( N )</span>\u0000with power singularities of derivatives on <span>( N )</span>\u0000and holomorphic in <span>( lambda )</span>.</p>","PeriodicalId":49533,"journal":{"name":"Siberian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138507161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Virtual Potency of Automorphism Groups and Split Extensions 关于自同构群和分裂扩展的虚势
IF 0.5 4区 数学
Siberian Mathematical Journal Pub Date : 2023-11-24 DOI: 10.1134/s0037446623060010
D. N. Azarov
{"title":"On the Virtual Potency of Automorphism Groups and Split Extensions","authors":"D. N. Azarov","doi":"10.1134/s0037446623060010","DOIUrl":"https://doi.org/10.1134/s0037446623060010","url":null,"abstract":"<p>We obtain some sufficient conditions for potency and virtual potency for automorphism\u0000groups and the split extensions of some groups. In particular, considering\u0000a finitely generated group <span>( G )</span> residually <span>( p )</span>-finite for every prime <span>( p )</span>,\u0000we prove that each split extension of <span>( G )</span> by a torsion-free potent group is a potent group,\u0000and if the abelianization rank of <span>( G )</span> is at most 2 then the automorphism group of <span>( G )</span> is virtually\u0000potent. As a corollary, we derive the necessary and sufficient conditions of virtual potency\u0000for certain generalized free products and HNN-extensions.</p>","PeriodicalId":49533,"journal":{"name":"Siberian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138533183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Quasi-Two-Dimensional Coefficient Inverse Problem for the Wave Equation in a Weakly Horizontally Inhomogeneous Medium with Memory 弱水平非均匀介质中波动方程的准二维系数反问题
IF 0.5 4区 数学
Siberian Mathematical Journal Pub Date : 2023-11-24 DOI: 10.1134/s0037446623060186
Z. A. Akhmatov, Zh. D. Totieva
{"title":"The Quasi-Two-Dimensional Coefficient Inverse Problem for the Wave Equation in a Weakly Horizontally Inhomogeneous Medium with Memory","authors":"Z. A. Akhmatov, Zh. D. Totieva","doi":"10.1134/s0037446623060186","DOIUrl":"https://doi.org/10.1134/s0037446623060186","url":null,"abstract":"<p>We present the inverse problem of successive determination\u0000of the two unknowns that are a coefficient characterizing\u0000the properties of a medium with weakly horizontal inhomogeneity\u0000and the kernel of an integral operator describing the memory of the medium.\u0000The direct initial-boundary value problem involves the zero data\u0000and the Neumann boundary condition.\u0000The trace of the Fourier image of a solution to the direct problem\u0000on the boundary of the medium serves as additional information.\u0000Studying inverse problems, we assume that the unknown coefficient is expanded\u0000into an asymptotic series in powers of a small parameter.\u0000Also, we construct some method for finding\u0000the coefficient that accounts for the memory of the environment\u0000to within an error of order <span>( O(varepsilon^{2}) )</span>.\u0000At the first stage, we determine\u0000a solution to the direct problem in the zero approximation\u0000and the kernel of the integral operator,\u0000while the inverse problem reduces to an equivalent problem of\u0000solving the system of nonlinear Volterra integral equations of the second kind.\u0000At the second stage, we consider the kernel given and recover\u0000a solution to the direct problem in the first approximation\u0000and the unknown coefficient.\u0000In this case, the solution to the equivalent inverse problem agrees\u0000with a solution to the linear system of Volterra integral equations of the second kind.\u0000We prove some theorems on the unique local solvability of the inverse problems\u0000and present the results of numerical calculations of the kernel and the coefficient.</p>","PeriodicalId":49533,"journal":{"name":"Siberian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138533198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信