Signal Processing-Image Communication最新文献

筛选
英文 中文
Are metrics measuring what they should? An evaluation of Image Captioning task metrics 衡量标准是衡量他们应该做什么吗?图像字幕任务度量的评估
IF 3.5 3区 工程技术
Signal Processing-Image Communication Pub Date : 2023-10-14 DOI: 10.1016/j.image.2023.117071
Othón González-Chávez , Guillermo Ruiz , Daniela Moctezuma , Tania Ramirez-delReal
{"title":"Are metrics measuring what they should? An evaluation of Image Captioning task metrics","authors":"Othón González-Chávez ,&nbsp;Guillermo Ruiz ,&nbsp;Daniela Moctezuma ,&nbsp;Tania Ramirez-delReal","doi":"10.1016/j.image.2023.117071","DOIUrl":"https://doi.org/10.1016/j.image.2023.117071","url":null,"abstract":"<div><p><span>Image Captioning is a current research task to describe the image content using the objects and their relationships in the scene. Two important research areas converge to tackle this task: artificial vision and natural language processing. In Image Captioning, as in any computational intelligence task, the performance metrics are crucial for knowing how well (or bad) a method performs. In recent years, it has been observed that classical metrics based on </span><span><math><mi>n</mi></math></span>-grams are insufficient to capture the semantics and the critical meaning to describe the content in an image. Looking to measure how well or not the current and more recent metrics are doing, in this article, we present an evaluation of several kinds of Image Captioning metrics and a comparison between them using the well-known datasets, MS-COCO and Flickr8k. The metrics were selected from the most used in prior works; they are those based on <span><math><mi>n</mi></math></span>-grams, such as BLEU, SacreBLEU, METEOR, ROGUE-L, CIDEr, SPICE, and those based on embeddings, such as BERTScore and CLIPScore. We designed two scenarios for this: (1) a set of artificially built captions with several qualities and (2) a comparison of some state-of-the-art Image Captioning methods. Interesting findings were found trying to answer the questions: Are the current metrics helping to produce high-quality captions? How do actual metrics compare to each other? What are the metrics <em>really</em> measuring?</p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"120 ","pages":"Article 117071"},"PeriodicalIF":3.5,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49833433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A transformer-based network for perceptual contrastive underwater image enhancement 基于变压器的感知对比水下图像增强网络
IF 3.5 3区 工程技术
Signal Processing-Image Communication Pub Date : 2023-10-01 DOI: 10.1016/j.image.2023.117032
Na Cheng, Zhixuan Sun, Xuanbing Zhu, Hongyu Wang
{"title":"A transformer-based network for perceptual contrastive underwater image enhancement","authors":"Na Cheng,&nbsp;Zhixuan Sun,&nbsp;Xuanbing Zhu,&nbsp;Hongyu Wang","doi":"10.1016/j.image.2023.117032","DOIUrl":"https://doi.org/10.1016/j.image.2023.117032","url":null,"abstract":"<div><p>Vision-based underwater image enhancement methods have received much attention for application in the fields of marine engineering and marine science. The absorption and scattering of light in real underwater scenes leads to severe information degradation in the acquired underwater images, thus limiting further development of underwater tasks. To solve these problems, a novel transformer-based perceptual contrastive network for underwater image enhancement methods (TPC-UIE) is proposed to achieve visually friendly and high-quality images, where contrastive learning<span> is applied to the underwater image enhancement (UIE) task for the first time. Specifically, to address the limitations of the pure convolution-based network, we embed the transformer into the UIE network to improve its ability to capture global dependencies. Then, the limits of the transformer are then taken into account as convolution is reintroduced to better capture local attention. At the same time, the dual-attention module strengthens the network’s focus on the spatial and color channels that are more severely attenuated. Finally, a perceptual contrastive regularization method is proposed, where a multi-loss function made up of reconstruction loss, perceptual loss, and contrastive loss jointly optimizes the model to simultaneously ensure texture detail, contrast, and color consistency. Experimental results on several existing datasets show that the TPC-UIE obtains excellent performance in both subjective and objective evaluations compared to other methods. In addition, the visual quality of the underwater images is significantly improved by the enhancement of the method and effectively facilitates further development of the underwater task.</span></p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"118 ","pages":"Article 117032"},"PeriodicalIF":3.5,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49896211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
No-reference blurred image quality assessment method based on structure of structure features 基于结构特征的无参考模糊图像质量评估方法
IF 3.5 3区 工程技术
Signal Processing-Image Communication Pub Date : 2023-10-01 DOI: 10.1016/j.image.2023.117008
Jian Chen , Shiyun Li , Li Lin , Jiaze Wan , Zuoyong Li
{"title":"No-reference blurred image quality assessment method based on structure of structure features","authors":"Jian Chen ,&nbsp;Shiyun Li ,&nbsp;Li Lin ,&nbsp;Jiaze Wan ,&nbsp;Zuoyong Li","doi":"10.1016/j.image.2023.117008","DOIUrl":"https://doi.org/10.1016/j.image.2023.117008","url":null,"abstract":"<div><p><span><span><span><span><span><span>The deep structure in the image contains certain information of the image, which is helpful to perceive the quality of the image. Inspired by deep level image features extracted via </span>deep learning<span> methods, we propose a no-reference blurred image quality evaluation model based on the structure of structure features. In spatial domain, the novel weighted local binary patterns are proposed which leverage maximum local variation maps to extract structural features from multi-resolution images. In </span></span>spectral domain, </span>gradient information<span> of multi-scale Log-Gabor filtered images is extracted as the structure of structure features, and combined with entropy features. Then, the features extracted from both domains are fused to form a quality perception feature vector and mapped into the quality score via support vector regression (SVR). Experiments are conducted to evaluate the performance of the proposed method on various </span></span>IQA databases, including the LIVE, CSIQ, TID2008, TID2013, CID2013, CLIVE, and BID. The experimental results show that compared with some state-of-the-art methods, our proposed method achieves better evaluation results and is more in line with the </span>human visual system<span>. The source code will be released at </span></span><span>https://github.com/JamesC0321/s2s_features/</span><svg><path></path></svg>.</p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"118 ","pages":"Article 117008"},"PeriodicalIF":3.5,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49844964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnifying multimodal forgery clues for Deepfake detection 放大多模态伪造线索的深度伪造检测
IF 3.5 3区 工程技术
Signal Processing-Image Communication Pub Date : 2023-10-01 DOI: 10.1016/j.image.2023.117010
Xiaolong Liu, Yang Yu, Xiaolong Li, Yao Zhao
{"title":"Magnifying multimodal forgery clues for Deepfake detection","authors":"Xiaolong Liu,&nbsp;Yang Yu,&nbsp;Xiaolong Li,&nbsp;Yao Zhao","doi":"10.1016/j.image.2023.117010","DOIUrl":"https://doi.org/10.1016/j.image.2023.117010","url":null,"abstract":"<div><p><span>Advancements in computer vision<span><span> and deep learning have led to difficulty in distinguishing the generated Deepfake media. In addition, recent forgery techniques also modify the audio information based on the forged video, which brings new challenges. However, due to the cross-modal bias, recent multimodal detection methods do not well explore the intra-modal and cross-modal forgery clues, which leads to limited detection performance. In this paper, we propose a novel audio-visual aware multimodal Deepfake detection framework to magnify intra-modal and cross-modal forgery clues. Firstly, to capture temporal intra-modal defects, Forgery Clues Magnification Transformer (FCMT) module is proposed to magnify forgery clues based on sequence-level relationships. Then, the Distribution Difference based Inconsistency Computing (DDIC) module based on Jensen–Shannon divergence is designed to adaptively align </span>multimodal information for further magnifying the cross-modal inconsistency. Next, we further explore spatial artifacts by connecting multi-scale feature representation to provide comprehensive information. Finally, a </span></span>feature fusion<span> module is designed to adaptively fuse features to generate a more discriminative feature. Experiments demonstrate that the proposed framework outperforms independently trained models, and at the same time, yields superior generalization capability on unseen types of Deepfake.</span></p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"118 ","pages":"Article 117010"},"PeriodicalIF":3.5,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49881552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-scale graph neural network for global stereo matching 用于全局立体匹配的多尺度图神经网络
IF 3.5 3区 工程技术
Signal Processing-Image Communication Pub Date : 2023-10-01 DOI: 10.1016/j.image.2023.117026
Xiaofeng Wang , Jun Yu , Zhiheng Sun , Jiameng Sun , Yingying Su
{"title":"Multi-scale graph neural network for global stereo matching","authors":"Xiaofeng Wang ,&nbsp;Jun Yu ,&nbsp;Zhiheng Sun ,&nbsp;Jiameng Sun ,&nbsp;Yingying Su","doi":"10.1016/j.image.2023.117026","DOIUrl":"https://doi.org/10.1016/j.image.2023.117026","url":null,"abstract":"<div><p>Currently, deep learning-based stereo matching<span><span> is solely based on local convolution networks, which lack enough global information for accurate disparity estimation. Motivated by the excellent global representation of the graph, a novel Multi-scale </span>Graph Neural Network<span><span> (MGNN) is proposed to essentially improve stereo matching from the global aspect. Firstly, we construct the multi-scale graph structure, where the multi-scale nodes with projected multi-scale image features<span> can be directly linked by the inner-scale and cross-scale edges, instead of solely relying on local convolutions for deep learning-based stereo matching. To enhance the spatial position information at non-Euclidean multi-scale graph space, we further propose a multi-scale </span></span>position embedding to embed the potential position features of Euclidean space into projected multi-scale image features. Secondly, we propose the multi-scale graph feature inference to extract global context information on multi-scale graph structure. Thus, the features not only be globally inferred on each scale, but also can be interactively inferred across different scales to comprehensively consider global context information with multi-scale receptive fields. Finally, MGNN is deployed into dense stereo matching and experiments demonstrate that our method achieves state-of-the-art performance on Scene Flow, KITTI 2012/2015, and Middlebury Stereo Evaluation v.3/2021.</span></span></p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"118 ","pages":"Article 117026"},"PeriodicalIF":3.5,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49844965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing transferability of adversarial examples with pixel-level scale variation 利用像素级尺度变化增强对抗性示例的可转移性
IF 3.5 3区 工程技术
Signal Processing-Image Communication Pub Date : 2023-10-01 DOI: 10.1016/j.image.2023.117020
Zhongshu Mao , Yiqin Lu , Zhe Cheng , Xiong Shen
{"title":"Enhancing transferability of adversarial examples with pixel-level scale variation","authors":"Zhongshu Mao ,&nbsp;Yiqin Lu ,&nbsp;Zhe Cheng ,&nbsp;Xiong Shen","doi":"10.1016/j.image.2023.117020","DOIUrl":"https://doi.org/10.1016/j.image.2023.117020","url":null,"abstract":"<div><p>The transferability of adversarial examples under the black-box attack setting has attracted extensive attention from the community. Input transformation is one of the most effective approaches to improve the transferability among all methods proposed recently. However, existing methods either only slightly improve transferability or are not robust to defense models. We delve into the generation process of adversarial examples and find that existing input transformation methods tend to craft adversarial examples by transforming the entire image, which we term image-level transformations. This naturally motivates us to perform pixel-level transformations, i.e., transforming only part pixels of the image. Experimental results show that pixel-level transformations can considerably enhance the transferability of the adversarial examples while still being robust to defense models. We believe that pixel-level transformations are more fine-grained than image-level transformations, and thus can achieve better performance. Based on this finding, we propose the pixel-level scale variation (PSV) method to further improve the transferability of adversarial examples. The proposed PSV randomly samples a set of scaled mask matrices and transforms the part pixels of the input image with the matrices to increase the pixel-level diversity. Empirical evaluations on the standard ImageNet dataset demonstrate the effectiveness and superior performance of the proposed PSV both on the normally trained (with the highest average attack success rate of 79.2%) and defense models (with the highest average attack success rate of 61.4%). Our method can further improve transferability (with the highest average attack success rate of 88.2%) by combining it with other input transformation methods.</p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"118 ","pages":"Article 117020"},"PeriodicalIF":3.5,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49844961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A coarse-to-fine multi-scale feature hybrid low-dose CT denoising network 一种由粗到细的多尺度特征混合低剂量CT去噪网络
IF 3.5 3区 工程技术
Signal Processing-Image Communication Pub Date : 2023-10-01 DOI: 10.1016/j.image.2023.117009
Zefang Han , Hong Shangguan, Xiong Zhang, Xueying Cui, Yue Wang
{"title":"A coarse-to-fine multi-scale feature hybrid low-dose CT denoising network","authors":"Zefang Han ,&nbsp;Hong Shangguan,&nbsp;Xiong Zhang,&nbsp;Xueying Cui,&nbsp;Yue Wang","doi":"10.1016/j.image.2023.117009","DOIUrl":"https://doi.org/10.1016/j.image.2023.117009","url":null,"abstract":"<div><p><span><span>With the growing development and wide clinical application of CT technology, the potential radiation damage to patients has sparked public concern. However, reducing the radiation dose may cause large amounts of noise and artifacts in the reconstructed images, which may affect the accuracy of the clinical diagnosis. Therefore, improving the quality of low-dose CT scans has become a popular research topic. Generative adversarial networks (GAN) have provided new research ideas for low-dose CT (LDCT) denoising. However, utilizing only image decomposition or adding new functional </span>subnetworks<span> cannot effectively fuse the same type of features with different scales (or different types of features). Thus, most current GAN-based denoising networks often suffer from low feature utilization and increased network complexity. To address these problems, we propose a coarse-to-fine multiscale feature hybrid low-dose CT denoising network (CMFHGAN). The generator consists of a global denoising module, local texture feature enhancement module, and self-calibration </span></span>feature fusion<span> module. The three modules complement each other and guarantee overall denoising performance. In addition, to further improve the denoising performance, we propose a multi-resolution inception discriminator with multiscale feature extraction ability. Experiments were performed on the Mayo and Piglet datasets, and the results showed that the proposed method outperformed the state-of-the-art denoising algorithms.</span></p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"118 ","pages":"Article 117009"},"PeriodicalIF":3.5,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49845014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RGB pixel n-grams: A texture descriptor RGB像素n-grams:纹理描述符
IF 3.5 3区 工程技术
Signal Processing-Image Communication Pub Date : 2023-10-01 DOI: 10.1016/j.image.2023.117028
Fátima Belén Paiva Pavón , María Cristina Orué Gil , José Luis Vázquez Noguera , Helena Gómez-Adorno , Valentín Calzada-Ledesma
{"title":"RGB pixel n-grams: A texture descriptor","authors":"Fátima Belén Paiva Pavón ,&nbsp;María Cristina Orué Gil ,&nbsp;José Luis Vázquez Noguera ,&nbsp;Helena Gómez-Adorno ,&nbsp;Valentín Calzada-Ledesma","doi":"10.1016/j.image.2023.117028","DOIUrl":"https://doi.org/10.1016/j.image.2023.117028","url":null,"abstract":"<div><p>This article proposes the “RGB Pixel N-grams” descriptor, which uses a sequence of <span><math><mi>n</mi></math></span><span> pixels to represent RGB color texture images. We conducted classification experiments with three different classifiers and five color texture image databases to evaluate the descriptor’s performance, using accuracy as the evaluation metric<span>. These databases include various textures from different surfaces, sometimes under different lighting, scale, or rotation conditions. The proposed descriptor proved to be robust and competitive compared to other state-of-the-art descriptors, as it has better accuracy in classification results in most databases and classifiers.</span></span></p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"118 ","pages":"Article 117028"},"PeriodicalIF":3.5,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49896213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual attention guided multi-scale fusion network for RGB-D salient object detection 用于RGB-D显著目标检测的双注意力引导多尺度融合网络
IF 3.5 3区 工程技术
Signal Processing-Image Communication Pub Date : 2023-10-01 DOI: 10.1016/j.image.2023.117004
Huan Gao, Jichang Guo, Yudong Wang, Jianan Dong
{"title":"Dual attention guided multi-scale fusion network for RGB-D salient object detection","authors":"Huan Gao,&nbsp;Jichang Guo,&nbsp;Yudong Wang,&nbsp;Jianan Dong","doi":"10.1016/j.image.2023.117004","DOIUrl":"https://doi.org/10.1016/j.image.2023.117004","url":null,"abstract":"<div><p>While recent research on salient object detection (SOD) has shown remarkable progress in leveraging both RGB and depth data, it is still worth exploring how to use the inherent relationship between the two to extract and fuse features more effectively, and further make more accurate predictions. In this paper, we consider combining the attention mechanism with the characteristics of the SOD, proposing the Dual Attention Guided Multi-scale Fusion Network. We design the multi-scale fusion block by combining multi-scale branches with channel attention to achieve better fusion of RGB and depth information. Using the characteristic of the SOD, the dual attention module is proposed to make the network pay more attention to the currently unpredicted saliency regions and the wrong parts in the already predicted regions. We perform an ablation study to verify the effectiveness of each component. Quantitative and qualitative experimental results demonstrate that our method achieves state-of-the-art (SOTA) performance.</p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"118 ","pages":"Article 117004"},"PeriodicalIF":3.5,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49844962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-light image enhancement based on virtual exposure 基于虚拟曝光的微光图像增强
IF 3.5 3区 工程技术
Signal Processing-Image Communication Pub Date : 2023-10-01 DOI: 10.1016/j.image.2023.117016
Wencheng Wang , Dongliang Yan , Xiaojin Wu , Weikai He , Zhenxue Chen , Xiaohui Yuan , Lun Li
{"title":"Low-light image enhancement based on virtual exposure","authors":"Wencheng Wang ,&nbsp;Dongliang Yan ,&nbsp;Xiaojin Wu ,&nbsp;Weikai He ,&nbsp;Zhenxue Chen ,&nbsp;Xiaohui Yuan ,&nbsp;Lun Li","doi":"10.1016/j.image.2023.117016","DOIUrl":"https://doi.org/10.1016/j.image.2023.117016","url":null,"abstract":"<div><p>Under poor illumination, the image information captured by a camera is partially lost, which seriously affects the visual perception of the human. Inspired by the idea that the fusion of multiexposure images can yield one high-quality image, an adaptive enhancement framework for a single low-light image is proposed based on the strategy of virtual exposure. In this framework, the exposure control parameters are adaptively generated through a statistical analysis of the low-light image, and a virtual exposure enhancer constructed by a quadratic function<span><span><span> is applied to generate several image frames from a single input image. Then, on the basis of generating weight maps by three factors, i.e., contrast, saturation and saliency, the image sequences and weight images are transformed by a Laplacian pyramid<span> and Gaussian pyramid, respectively, and multiscale fusion is implemented layer by layer. Finally, the enhanced result is obtained by pyramid reconstruction rule. Compared with the experimental results of several state-of-the-art methods on five datasets, the proposed method shows its superiority on several image quality evaluation metrics. This method requires neither image calibration nor </span></span>camera response function estimation and has a more flexible application range. It can weaken the possibility of overenhancement, effectively avoid the appearance of a halo in the enhancement results, and adaptively improve the visual </span>information fidelity.</span></p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"118 ","pages":"Article 117016"},"PeriodicalIF":3.5,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49881553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信