Review of computer engineering research最新文献

筛选
英文 中文
A review of few-shot image recognition using semantic information 基于语义信息的少镜头图像识别技术综述
Review of computer engineering research Pub Date : 2023-09-15 DOI: 10.18488/76.v10i2.3472
Liyong Guo, Erzam Marlisah, Hamidah Ibrahim, Noridayu Manshor
{"title":"A review of few-shot image recognition using semantic information","authors":"Liyong Guo, Erzam Marlisah, Hamidah Ibrahim, Noridayu Manshor","doi":"10.18488/76.v10i2.3472","DOIUrl":"https://doi.org/10.18488/76.v10i2.3472","url":null,"abstract":"In recent years, the utilization of deep learning techniques has been employed in the field of image recognition with the aim of improving performance. However, deep learning demands a substantial amount of labeled data for model training, a process that is both expensive and time-consuming. In order to tackle this particular difficulty, the approach of few-shot learning (FSL) has emerged as a viable alternative. FSL, or Few-Shot Learning, is a computational approach that aims to replicate the cognitive processes observed in humans. By using a small set of examples and experiences, FSL enables the acquisition of new concepts. Research in the field of FSL has investigated many approaches to extracting the highest amount of information from limited data or making use of affordable and easily accessible sources of information. Researchers have been incorporating outside data into FSL techniques more frequently. This paper conducts an in-depth exploration of leveraging semantic information to enhance few-shot learning. By reviewing papers from the last five years in WOS, IEEE, and Science Direct (some papers in arXiv are also used), this study delves into the strategies employed to bridge the gap between visual and semantic information. The review extends to encompass zero-shot learning, which is considered a subcategory of FSL, enriching the analysis. Moreover, this paper identifies the potential of employing semantic information to enhance fine-grained few-shot (FGFS) learning. Techniques such as direct projection and the application of generative adversarial networks (GANs) emerge as promising avenues to accomplish this enhancement.","PeriodicalId":493889,"journal":{"name":"Review of computer engineering research","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135484592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信