Epidemics最新文献

筛选
英文 中文
Modelling outbreak response impact in human vaccine-preventable diseases: A systematic review of differences in practices between collaboration types before COVID-19 人类疫苗可预防疾病的疫情应对影响建模:新冠肺炎前合作类型之间实践差异的系统回顾。
IF 3.8 3区 医学
Epidemics Pub Date : 2023-10-30 DOI: 10.1016/j.epidem.2023.100720
James M. Azam , Xiaoxi Pang , Elisha B. Are , Juliet R.C. Pulliam , Matthew J. Ferrari
{"title":"Modelling outbreak response impact in human vaccine-preventable diseases: A systematic review of differences in practices between collaboration types before COVID-19","authors":"James M. Azam ,&nbsp;Xiaoxi Pang ,&nbsp;Elisha B. Are ,&nbsp;Juliet R.C. Pulliam ,&nbsp;Matthew J. Ferrari","doi":"10.1016/j.epidem.2023.100720","DOIUrl":"10.1016/j.epidem.2023.100720","url":null,"abstract":"<div><h3>Background:</h3><p>Outbreak response modelling often involves collaboration among academics, and experts from governmental and non-governmental organizations. We conducted a systematic review of modelling studies on human vaccine-preventable disease (VPD) outbreaks to identify patterns in modelling practices between two collaboration types. We complemented this with a mini comparison of foot-and-mouth disease (FMD), a veterinary disease that is controllable by vaccination.</p></div><div><h3>Methods:</h3><p>We searched three databases for modelling studies that assessed the impact of an outbreak response. We extracted data on author affiliation type (academic institution, governmental, and non-governmental organizations), location studied, and whether at least one author was affiliated to the studied location. We also extracted the outcomes and interventions studied, and model characteristics. Included studies were grouped into two collaboration types: purely academic (papers with only academic affiliations), and mixed (all other combinations) to help investigate differences in modelling patterns between collaboration types in the human disease literature and overall differences with FMD collaboration practices.</p></div><div><h3>Results:</h3><p>Human VPDs formed 227 of 252 included studies. Purely academic collaborations dominated the human disease studies (56%). Notably, mixed collaborations increased in the last seven years (2013–2019). Most studies had an author affiliated to an institution in the country studied (75.2%) but this was more likely among the mixed collaborations. Contrasted to the human VPDs, mixed collaborations dominated the FMD literature (56%). Furthermore, FMD studies more often had an author with an affiliation to the country studied (92%) and used complex model design, including stochasticity, and model parametrization and validation.</p></div><div><h3>Conclusion:</h3><p>The increase in mixed collaboration studies over the past seven years could suggest an increase in the uptake of modelling for outbreak response decision-making. We encourage more mixed collaborations between academic and non-academic institutions and the involvement of locally affiliated authors to help ensure that the studies suit local contexts.</p></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1755436523000567/pdfft?md5=3026204558e1fdbce504ec75af88ca46&pid=1-s2.0-S1755436523000567-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72015916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mathematical methods for scaling from within-host to population-scale in infectious disease systems 传染病系统中从宿主内尺度到种群尺度的数学方法
IF 3.8 3区 医学
Epidemics Pub Date : 2023-10-30 DOI: 10.1016/j.epidem.2023.100724
James W.G. Doran , Robin N. Thompson , Christian A. Yates , Ruth Bowness
{"title":"Mathematical methods for scaling from within-host to population-scale in infectious disease systems","authors":"James W.G. Doran ,&nbsp;Robin N. Thompson ,&nbsp;Christian A. Yates ,&nbsp;Ruth Bowness","doi":"10.1016/j.epidem.2023.100724","DOIUrl":"https://doi.org/10.1016/j.epidem.2023.100724","url":null,"abstract":"<div><p>Mathematical modellers model infectious disease dynamics at different scales. Within-host models represent the spread of pathogens inside an individual, whilst between-host models track transmission between individuals. However, pathogen dynamics at one scale affect those at another. This has led to the development of multiscale models that connect within-host and between-host dynamics. In this article, we systematically review the literature on multiscale infectious disease modelling according to PRISMA guidelines, dividing previously published models into five categories governing their methodological approaches (Garira (2017)), explaining their benefits and limitations. We provide a primer on developing multiscale models of infectious diseases.</p></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1755436523000609/pdfft?md5=42f11d0050552382ff9757df7e1a40db&pid=1-s2.0-S1755436523000609-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134654324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trypanosoma cruzi infection in dogs along the US-Mexico border: R0 changes with vector species composition 沿美墨边境犬科氏锥虫感染:R0随媒介物种组成变化
IF 3.8 3区 医学
Epidemics Pub Date : 2023-10-29 DOI: 10.1016/j.epidem.2023.100723
Luis Fernando Chaves , Alyssa C. Meyers , Carolyn L. Hodo , John P. Sanders , Rachel Curtis-Robles , Gabriel L. Hamer , Sarah A. Hamer
{"title":"Trypanosoma cruzi infection in dogs along the US-Mexico border: R0 changes with vector species composition","authors":"Luis Fernando Chaves ,&nbsp;Alyssa C. Meyers ,&nbsp;Carolyn L. Hodo ,&nbsp;John P. Sanders ,&nbsp;Rachel Curtis-Robles ,&nbsp;Gabriel L. Hamer ,&nbsp;Sarah A. Hamer","doi":"10.1016/j.epidem.2023.100723","DOIUrl":"https://doi.org/10.1016/j.epidem.2023.100723","url":null,"abstract":"<div><p>Infection with <em>Trypanosoma cruzi,</em> etiological agent of Chagas disease, is common in US government working dogs along the US-Mexico border. This 3145 km long border comprises four states: Texas (TX), New Mexico (NM), Arizona (AZ) and California (CA) with diverse ecosystems and several triatomine (a.k.a., kissing bug) species, primary vectors of <em>T. cruzi</em> in this region. The kissing bug (Heteroptera: Reduviidae) community ranging from CA to TX includes <em>Triatoma protracta</em> (Uhler), <em>Triatoma recurva</em> (Stål) and <em>Triatoma rubida</em> (Uhler) and becomes dominated by <em>Triatoma gerstaeckeri</em> Stål in TX. Here, we ask if <em>T. cruzi</em> infection dynamics in dogs varies along this border region, potentially reflecting changes in vector species and their vectorial capacity. Using reversible catalytic models of infection, where seropositivity can be lost, we estimated an <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> (Estimate ± S.E.) of 1.192 ± 0.084 for TX and NM. In contrast, seropositivity decayed to zero as dogs aged in AZ and CA. These results suggest that dogs are likely infected by <em>T. cruzi</em> during their training in western TX, with a force of infection large enough for keeping <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> above 1, i.e., the disease endemically established, in TX and NM. In AZ and CA, a lower force of infection, probably associated with different vector species communities and associated vectorial capacity and/or different lineages of <em>T. cruzi</em>, results in dogs decreasing their seropositivity with age.</p></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1755436523000592/pdfft?md5=57f445b1b533dc6f207553a8bb34d8fe&pid=1-s2.0-S1755436523000592-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92065947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A nationwide lockdown and deaths due to COVID-19 in the Indian subcontinent 印度次大陆出现全国范围的封锁和COVID-19造成的死亡
IF 3.8 3区 医学
Epidemics Pub Date : 2023-10-20 DOI: 10.1016/j.epidem.2023.100722
Amit N. Sawant, Mats J. Stensrud
{"title":"A nationwide lockdown and deaths due to COVID-19 in the Indian subcontinent","authors":"Amit N. Sawant,&nbsp;Mats J. Stensrud","doi":"10.1016/j.epidem.2023.100722","DOIUrl":"https://doi.org/10.1016/j.epidem.2023.100722","url":null,"abstract":"<div><p>During the COVID-19 pandemic, the effects of nationwide lockdowns on health outcomes have been widely studied in Western, developed countries. However, the effects of lockdowns in emerging and developing countries are largely unknown. We used data from India and Bangladesh to study the effect of nationwide restrictions on public movement in Bangladesh in April 2021 on health outcomes, specifically COVID-19 incidence and mortality. India and Bangladesh had nearly identical development of the COVID-19 Delta wave the weeks before the lockdown. We leveraged longitudinal data from the pre- and post-intervention period in both countries in a structural causal model, suggesting that the reported deaths in Bangladesh due to COVID-19 would have been <span><math><mrow><mo>∼</mo><mn>117</mn><mtext>%</mtext></mrow></math></span> higher (95% PI: 72%–170%) in April 2021 had there been fewer restrictions. Further, we used population mobility data from Google to study behavioural changes in the two countries, supporting the hypothesis that the intervention had substantial effects on the mobility trends of the Bangladeshi population, which in turn reduced the number of COVID-19 deaths.</p></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1755436523000580/pdfft?md5=7adbe1b1f5b16df548daebadb5d9bf87&pid=1-s2.0-S1755436523000580-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92065946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Model-based estimates of chikungunya epidemiological parameters and outbreak risk from varied data types 根据不同数据类型对基孔肯雅病流行病学参数和疫情风险进行基于模型的估计。
IF 3.8 3区 医学
Epidemics Pub Date : 2023-10-18 DOI: 10.1016/j.epidem.2023.100721
Alexander D. Meyer , Sandra Mendoza Guerrero , Natalie E. Dean , Kathryn B. Anderson , Steven T. Stoddard , T. Alex Perkins
{"title":"Model-based estimates of chikungunya epidemiological parameters and outbreak risk from varied data types","authors":"Alexander D. Meyer ,&nbsp;Sandra Mendoza Guerrero ,&nbsp;Natalie E. Dean ,&nbsp;Kathryn B. Anderson ,&nbsp;Steven T. Stoddard ,&nbsp;T. Alex Perkins","doi":"10.1016/j.epidem.2023.100721","DOIUrl":"10.1016/j.epidem.2023.100721","url":null,"abstract":"<div><p>Assessing the factors responsible for differences in outbreak severity for the same pathogen is a challenging task, since outbreak data are often incomplete and may vary in type across outbreaks (e.g., daily case counts, serology, cases per household). We propose that outbreaks described with varied data types can be directly compared by using those data to estimate a common set of epidemiological parameters. To demonstrate this for chikungunya virus (CHIKV), we developed a realistic model of CHIKV transmission, along with a Bayesian inference method that accommodates any type of outbreak data that can be simulated. The inference method makes use of the fact that all data types arise from the same transmission process, which is simulated by the model. We applied these tools to data from three real-world outbreaks of CHIKV in Italy, Cambodia, and Bangladesh to estimate nine model parameters. We found that these populations differed in several parameters, including pre-existing immunity and house-to-house differences in mosquito activity. These differences resulted in posterior predictions of local CHIKV transmission risk that varied nearly fourfold: 16% in Italy, 28% in Cambodia, and 62% in Bangladesh. Our inference method and model can be applied to improve understanding of the epidemiology of CHIKV and other pathogens for which outbreaks are described with varied data types.</p></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1755436523000579/pdfft?md5=ec8a1dcbc137c07987bb7e1df14765ae&pid=1-s2.0-S1755436523000579-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"61565655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epidemiological characteristics and dynamic transmissions of COVID-19 pandemics in Chinese mainland: A trajectory clustering perspective analysis 新冠肺炎疫情在中国大陆的流行病学特征和动态传播:轨迹聚类透视分析。
IF 3.8 3区 医学
Epidemics Pub Date : 2023-09-26 DOI: 10.1016/j.epidem.2023.100719
Jingfeng Chen , Shuaiyin Chen , Guangcai Duan , Teng Zhang , Haitao Zhao , Zhuoqing Wu , Haiyan Yang , Suying Ding
{"title":"Epidemiological characteristics and dynamic transmissions of COVID-19 pandemics in Chinese mainland: A trajectory clustering perspective analysis","authors":"Jingfeng Chen ,&nbsp;Shuaiyin Chen ,&nbsp;Guangcai Duan ,&nbsp;Teng Zhang ,&nbsp;Haitao Zhao ,&nbsp;Zhuoqing Wu ,&nbsp;Haiyan Yang ,&nbsp;Suying Ding","doi":"10.1016/j.epidem.2023.100719","DOIUrl":"10.1016/j.epidem.2023.100719","url":null,"abstract":"<div><h3>Background</h3><p>The corona virus disease 2019 (COVID-19) pandemic has spread to more than 210 countries and regions around the world, with different characteristics recorded depending on the location. A systematic summarization of COVID-19 outbreaks that occurred during the “dynamic zero-COVID” policy period in Chinese mainland had not been previously conducted. In-depth mining of the big data from the past two years of the COVID-19 pandemics must be performed to clarify their epidemiological characteristics and dynamic transmissions.</p></div><div><h3>Methods</h3><p>Trajectory clustering was used to group epidemic and time-varying reproduction number (Rt) curves of mass outbreaks into different models and reveal the epidemiological characteristics and dynamic transmissions of COVID-19. For the selected single-peak epidemic curves, we constructed a peak-point judgment model based on the dynamic slope and adopted a single-peak fitting model to identify the key time points and peak parameters. Finally, we developed an extreme gradient boosting-based prediction model for peak infection cases based on the total number of infections on the first 3, 5, and 7 days of the initial average incubation period.</p></div><div><h3>Results</h3><p>(1) A total of 7 52298 cases, including 587 outbreaks in 251 cities in Chinese mainland between June 11, 2020, and June 29, 2022, were collected, and the first wave of COVID-19 outbreaks was excluded. Excluding the Shanghai outbreak in 2022, the 586 remaining outbreaks resulted in 1 25425 infections, with an infection rate of 4.21 per 1 00000 individuals. The number of outbreaks varied based on location, season, and temperature.</p><p>(2) Trajectory clustering analysis showed that 77 epidemic curves were divided into four patterns, which were dominated by two single-peak clustering patterns (63.3%). A total of 77 Rt curves were grouped into seven patterns, with the leading patterns including four downward dynamic transmission patterns (74.03%). These curves revealed that the interval from peak to the point where the Rt value dropped below 1 was approximately 5 days.</p><p>(3) The peak-point judgment model achieved a better result in the area under the curve (0.96, 95% confidence interval = 0.90–1.00). The single-peak fitting results on the epidemic curves indicated that the interval from the slow-growth point to the sharp-decline point was approximately 4–6 days in more than 50% of mass outbreaks.</p><p>(4) The peak-infection-case prediction model exhibited the superior clustering results of epidemic and Rt curves compared with the findings without grouping.</p></div><div><h3>Conclusion</h3><p>Overall, our findings suggest the variation in the infection rates during the “dynamic zero-COVID” policy period based on the geographic division, level of economic development, seasonal division, and temperature. Trajectory clustering can be a useful tool for discovering epidemiological characteristics and dynamic tran","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41144590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differential contagiousness of respiratory disease across the United States 美国各地呼吸道疾病的不同传染性。
IF 3.8 3区 医学
Epidemics Pub Date : 2023-09-22 DOI: 10.1016/j.epidem.2023.100718
Abhishek Mallela , Yen Ting Lin , William S. Hlavacek
{"title":"Differential contagiousness of respiratory disease across the United States","authors":"Abhishek Mallela ,&nbsp;Yen Ting Lin ,&nbsp;William S. Hlavacek","doi":"10.1016/j.epidem.2023.100718","DOIUrl":"10.1016/j.epidem.2023.100718","url":null,"abstract":"<div><p>The initial contagiousness of a communicable disease within a given population is quantified by the basic reproduction number, <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. This number depends on both pathogen and population properties. On the basis of compartmental models that reproduce Coronavirus Disease 2019 (COVID-19) surveillance data, we used Bayesian inference and the next-generation matrix approach to estimate region-specific <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> values for 280 of 384 metropolitan statistical areas (MSAs) in the United States (US), which account for 95% of the US population living in urban areas and 82% of the total population. We focused on MSA populations after finding that these populations were more uniformly impacted by COVID-19 than state populations. Our maximum a posteriori (MAP) estimates for <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> range from 1.9 to 7.7 and quantify the relative susceptibilities of regional populations to spread of respiratory diseases.</p></div><div><h3>One-Sentence Summary</h3><p>Initial contagiousness of Coronavirus Disease 2019 varied over a 4-fold range across urban areas of the United States.</p></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41140424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Limited impact of contact tracing in a University setting for COVID-19 due to asymptomatic transmission and social distancing 由于无症状传播和保持社交距离,新冠肺炎大学环境中接触者追踪的影响有限。
IF 3.8 3区 医学
Epidemics Pub Date : 2023-09-08 DOI: 10.1016/j.epidem.2023.100716
Daniel Stocks , Emily Nixon , Adam Trickey , Martin Homer , Ellen Brooks-Pollock
{"title":"Limited impact of contact tracing in a University setting for COVID-19 due to asymptomatic transmission and social distancing","authors":"Daniel Stocks ,&nbsp;Emily Nixon ,&nbsp;Adam Trickey ,&nbsp;Martin Homer ,&nbsp;Ellen Brooks-Pollock","doi":"10.1016/j.epidem.2023.100716","DOIUrl":"10.1016/j.epidem.2023.100716","url":null,"abstract":"<div><p>Contact tracing is an important tool for controlling the spread of infectious diseases, including COVID-19. Here, we investigate the spread of COVID-19 and the effectiveness of contact tracing in a university population, using a data-driven ego-centric network model constructed with social contact data collected during 2020 and similar data collected in 2010. We find that during 2020, university staff and students consistently reported fewer social contacts than in 2010, however those contacts occurred more frequently and were of longer duration. We find that contact tracing in the presence of social distancing is less impactful than without social distancing. By combining multiple data sources, we show that University-aged populations are likely to develop asymptomatic COVID-19 infections. We find that asymptomatic index cases cannot be reliably discovered through contact tracing and consequently transmission in their social network is not significantly reduced through contact tracing. In summary, social distancing restrictions had a large impact on limiting COVID-19 outbreaks in universities; to reduce transmission further contact tracing should be used in conjunction with alternative interventions.</p></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10553284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicted reduction in transmission from deployment of ivermectin-treated birdfeeders for local control of West Nile virus 为当地控制西尼罗河病毒,部署伊维菌素处理的喂鸟器可减少传播。
IF 3.8 3区 医学
Epidemics Pub Date : 2023-09-01 DOI: 10.1016/j.epidem.2023.100697
Karen M. Holcomb , Chilinh Nguyen , Nicholas Komar , Brian D. Foy , Nicholas A. Panella , Marissa L. Baskett , Christopher M. Barker
{"title":"Predicted reduction in transmission from deployment of ivermectin-treated birdfeeders for local control of West Nile virus","authors":"Karen M. Holcomb ,&nbsp;Chilinh Nguyen ,&nbsp;Nicholas Komar ,&nbsp;Brian D. Foy ,&nbsp;Nicholas A. Panella ,&nbsp;Marissa L. Baskett ,&nbsp;Christopher M. Barker","doi":"10.1016/j.epidem.2023.100697","DOIUrl":"10.1016/j.epidem.2023.100697","url":null,"abstract":"<div><p>Ivermectin (IVM)-treated birds provide the potential for targeted control of <em>Culex</em> mosquitoes to reduce West Nile virus (WNV) transmission. Ingestion of IVM increases mosquito mortality, which could reduce WNV transmission from birds to humans and in enzootic maintenance cycles affecting predominantly bird-feeding mosquitoes and from birds to humans. This strategy might also provide an alternative method for WNV control that is less hampered by insecticide resistance and the logistics of large-scale pesticide applications. Through a combination of field studies and modeling, we assessed the feasibility and impact of deploying IVM-treated birdfeed in residential neighborhoods to reduce WNV transmission. We first tracked 105 birds using radio telemetry and radio frequency identification to monitor their feeder usage and locations of nocturnal roosts in relation to five feeder sites in a neighborhood in Fort Collins, Colorado. Using these results, we then modified a compartmental model of WNV transmission to account for the impact of IVM on mosquito mortality and spatial movement of birds and mosquitoes on the neighborhood level. We found that, while the number of treated lots in a neighborhood strongly influenced the total transmission potential, the arrangement of treated lots in a neighborhood had little effect. Increasing the proportion of treated birds, regardless of the WNV competency status, resulted in a larger reduction in infection dynamics than only treating competent birds. Taken together, model results indicate that deployment of IVM-treated feeders could reduce local transmission throughout the WNV season, including reducing the enzootic transmission prior to the onset of human infections, with high spatial coverage and rates of IVM-induced mortality in mosquitoes. To improve predictions, more work is needed to refine estimates of daily mosquito movement in urban areas and rates of IVM-induced mortality. Our results can guide future field trials of this control strategy.</p></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10529638/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10530219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extending EpiEstim to estimate the transmission advantage of pathogen variants in real-time: SARS-CoV-2 as a case-study 扩展EpiEstim以实时估计病原体变体的传播优势:以严重急性呼吸系统综合征冠状病毒2型为例研究。
IF 3.8 3区 医学
Epidemics Pub Date : 2023-09-01 DOI: 10.1016/j.epidem.2023.100692
Sangeeta Bhatia , Jack Wardle , Rebecca K. Nash , Pierre Nouvellet , Anne Cori
{"title":"Extending EpiEstim to estimate the transmission advantage of pathogen variants in real-time: SARS-CoV-2 as a case-study","authors":"Sangeeta Bhatia ,&nbsp;Jack Wardle ,&nbsp;Rebecca K. Nash ,&nbsp;Pierre Nouvellet ,&nbsp;Anne Cori","doi":"10.1016/j.epidem.2023.100692","DOIUrl":"10.1016/j.epidem.2023.100692","url":null,"abstract":"<div><p>The evolution of SARS-CoV-2 has demonstrated that emerging variants can set back the global COVID-19 response. The ability to rapidly assess the threat of new variants is critical for timely optimisation of control strategies.</p><p>We present a novel method to estimate the effective transmission advantage of a new variant compared to a reference variant combining information across multiple locations and over time. Through an extensive simulation study designed to mimic real-time epidemic contexts, we show that our method performs well across a range of scenarios and provide guidance on its optimal use and interpretation of results. We also provide an open-source software implementation of our method. The computational speed of our tool enables users to rapidly explore spatial and temporal variations in the estimated transmission advantage.</p><p>We estimate that the SARS-CoV-2 Alpha variant is 1.46 (95% Credible Interval 1.44–1.47) and 1.29 (95% CrI 1.29–1.30) times more transmissible than the wild type, using data from England and France respectively. We further estimate that Delta is 1.77 (95% CrI 1.69–1.85) times more transmissible than Alpha (England data).</p><p>Our approach can be used as an important first step towards quantifying the threat of emerging or co-circulating variants of infectious pathogens in real-time.</p></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10284428/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10175115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信