Yan Ma, Youqi Wang, Chengfeng Ma, Cheng Yuan, Yiru Bai
{"title":"Effects of gravel on the water absorption characteristics and hydraulic parameters of stony soil","authors":"Yan Ma, Youqi Wang, Chengfeng Ma, Cheng Yuan, Yiru Bai","doi":"10.1007/s40333-024-0079-y","DOIUrl":"https://doi.org/10.1007/s40333-024-0079-y","url":null,"abstract":"<p>The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel, where gravel could affect the water movement process in the soil. This study focused on the effects of different gravel contents on the water absorption characteristics and hydraulic parameters of stony soil. The stony soil samples were collected from the eastern foothills of the Helan Mountains in April 2023 and used as the experimental materials to conduct a one-dimensional horizontal soil column absorption experiment. Six experimental groups with gravel contents of 0%, 10%, 20%, 30%, 40%, and 50% were established to determine the saturated hydraulic conductivity (<i>K</i><sub><i>s</i></sub>), saturated water content (<i>θ</i><sub><i>s</i></sub>), initial water content (<i>θ</i><sub><i>i</i></sub>), and retention water content (<i>θ</i><sub><i>r</i></sub>), and explore the changes in the wetting front depth and cumulative absorption volume during the absorption experiment. The Philip model was used to fit the soil absorption process and determine the soil water absorption rate. Then the length of the characteristic wetting front depth, shape coefficient, empirical parameter, inverse intake suction and soil water suction were derived from the van Genuchten model. Finally, the hydraulic parameters mentioned above were used to fit the soil water characteristic curves, unsaturated hydraulic conductivity (<i>K</i><sub><i>θ</i></sub>) and specific water capacity (<i>C</i>(<i>h</i>)). The results showed that the wetting front depth and cumulative absorption volume of each treatment gradually decreased with increasing gravel content. Compared with control check treatment with gravel content of 0%, soil water absorption rates in the treatments with gravel contents of 10%, 20%, 30%, 40%, and 50% decreased by 11.47%, 17.97%, 25.24%, 29.83%, and 42.45%, respectively. As the gravel content increased, inverse intake suction gradually increased, and shape coefficient, <i>K</i><sub><i>s</i></sub>, <i>θ</i><sub><i>s</i></sub>, and <i>θ</i><sub><i>r</i></sub> gradually decreased. For the same soil water content, soil water suction and <i>K</i><sub><i>θ</i></sub> gradually decreased with increasing gravel content. At the same soil water suction, <i>C</i>(<i>h</i>) decreased with increasing gravel content, and the water use efficiency worsened. Overall, the water holding capacity, hydraulic conductivity, and water use efficiency of stony soil in the eastern foothills of the Helan Mountains decreased with increasing gravel content. This study could provide data support for improving soil water use efficiency in the eastern foothills of the Helan Mountains and other similar rocky mountainous areas.</p>","PeriodicalId":49169,"journal":{"name":"Journal of Arid Land","volume":"44 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141863549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haq S. Marifatul, Darwish Mohammed, Waheed Muhammad, Kumar Manoj, Siddiqui H. Manzer, Bussmann W. Rainer
{"title":"Predicting potential invasion risks of Leucaena leucocephala (Lam.) de Wit in the arid area of Saudi Arabia","authors":"Haq S. Marifatul, Darwish Mohammed, Waheed Muhammad, Kumar Manoj, Siddiqui H. Manzer, Bussmann W. Rainer","doi":"10.1007/s40333-024-0020-4","DOIUrl":"https://doi.org/10.1007/s40333-024-0020-4","url":null,"abstract":"<p>The presence of invasive plant species poses a substantial ecological impact, thus comprehensive evaluation of their potential range and risk under the influence of climate change is necessary. This study uses maximum entropy (MaxEnt) modeling to forecast the likelihood of <i>Leucaena leucocephala</i> (Lam.) de Wit invasion in Saudi Arabia under present and future climate change scenarios. Utilizing the MaxEnt modeling, we integrated climatic and soil data to predict habitat suitability for the invasive species. We conducted a detailed analysis of the distribution patterns of the species, using climate variables and ecological factors. We focused on the important influence of temperature seasonality, temperature annual range, and precipitation seasonality. The distribution modeling used robust measures of area under the curve (AUC) and receiver-operator characteristic (ROC) curves, to map the invasion extent, which has a high level of accuracy in identifying appropriate habitats. The complex interaction that influenced the invasion of <i>L. leucocephala</i> was highlighted by the environmental parameters using Jackknife test. Presently, the actual geographic area where <i>L. leucocephala</i> was found in Saudi Arabia was considerably smaller than the theoretical maximum range, suggesting that it had the capacity to expand further. The MaxEnt model exhibited excellent prediction accuracy and produced reliable results based on the data from the ROC curve. Precipitation and temperature were the primary factors influencing the potential distribution of <i>L. leucocephala.</i> Currently, an estimated area of 216,342 km<sup>2</sup> in Saudi Arabia was at a high probability of invasion by <i>L. leucocephala.</i> We investigated the potential for increased invasion hazards in the future due to climate change scenarios (Shared Socioeconomic Pathways (SSPs) 245 and 585). The analysis of key climatic variables, including temperature seasonality and annual range, along with soil properties such as clay composition and nitrogen content, unveiled their substantial influence on the distribution dynamic of <i>L. leucocephala.</i> Our findings indicated a significant expansion of high risk zones. High-risk zones for <i>L. leucocephala</i> invasion in the current climate conditions had notable expansions projected under future climate scenarios, particularly evident in southern Makkah, Al Bahah, Madina, and Asir areas. The results, backed by thorough spatial studies, emphasize the need to reduce the possible ecological impacts of climate change on the spread of <i>L. leucocephala.</i> Moreover, the study provides valuable strategic insights for the management of invasion, highlighting the intricate relationship between climate change, habitat appropriateness, and the risks associated with invasive species. Proactive techniques are suggested to avoid and manage the spread of <i>L. leucocephala</i>, considering its high potential for future spread. This study enh","PeriodicalId":49169,"journal":{"name":"Journal of Arid Land","volume":"75 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141863444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zulfira Rakhmankulova, Elena Shuyskaya, Maria Prokofieva, Kristina Toderich, Pavel Voronin
{"title":"Plasticity of photorespiratory carbon concentration mechanism in Sedobassia sedoides (Pall.) Freitag & G. Kadereit under elevated CO2 concentration and salinity","authors":"Zulfira Rakhmankulova, Elena Shuyskaya, Maria Prokofieva, Kristina Toderich, Pavel Voronin","doi":"10.1007/s40333-024-0018-y","DOIUrl":"https://doi.org/10.1007/s40333-024-0018-y","url":null,"abstract":"<p>Rising atmospheric CO<sub>2</sub> (carbon dioxide) concentrations and salinization are manifestations of climate change that affect plant growth and productivity. Species with an intermediate C<sub>3</sub>–C<sub>4</sub> type of photosynthesis live in a wide range of precipitation, temperature, and soil quality, but are more often found in warm and dry habitats. One of the intermediate C<sub>3</sub>–C<sub>4</sub> photosynthetic type is C<sub>2</sub> photosynthesis with a carbon concentration mechanism (CCM) that reassimilates CO<sub>2</sub> released via photorespiration. However, the ecological significance under which C<sub>2</sub> photosynthesis has advantages over C<sub>3</sub> and C<sub>4</sub> plants remains largely unexplored. Salt tolerance and functioning of CCM were studied in plants from two populations (P1 and P2) of <i>Sedobassia sedoides</i> (Pall.) Freitag & G. Kadereit Asch. species with C<sub>2</sub> photosynthesis exposed to 4 d and 10 d salinity (200 mM NaCl) at ambient (785.7 mg/m<sup>3</sup>, aCO<sub>2</sub>) and elevated (1571.4 mg/m<sup>3</sup>, eCO<sub>2</sub>) CO<sub>2</sub>. On the fourth day of salinity, an increase in Na<sup>+</sup> content, activity catalase, and superoxide dismutase was observed in both populations. P2 plants showed an increase in proline content and a decrease in photosynthetic enzyme content: rubisco, phosphoenolpyruvate carboxylase (PEPC), and glycine decarboxylase (GDC), which indicated a weakening of C<sub>2</sub> and C<sub>4</sub> characteristics under salinity. Treatment under 10 d salinity led to an increased Na<sup>+</sup> content and activity of cyclic electron flow around photosystem I (PSI CEF), a decreased content of K<sup>+</sup> and GDC in both populations. P1 plants showed greater salt tolerance, which was assessed by the degree of reduction in photosynthetic enzyme content, PSI CEF activity, and changes in relative growth rate (RGR). Differences between populations were evident under the combination of eCO<sub>2</sub> and salinity. Under long-term salinity and eCO<sub>2</sub>, more salt-tolerant P1 plants had a higher dry biomass (DW), which was positively correlated with PSI CEF activity. In less salt-tolerant P2 plants, DW correlated with transpiration and dark respiration. Thus, <i>S. sedoides</i> showed a high degree of photosynthetic plasticity under the influence of salinity and eCO<sub>2</sub> through strengthening (P1 plants) and weakening C<sub>4</sub> characteristics (P2 plants).</p>","PeriodicalId":49169,"journal":{"name":"Journal of Arid Land","volume":"1 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141863443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Asmaa S. Abo Hatab, Yassin M. Al-Sodany, Kamal H. Shaltout, Soliman A. Haroun, Mohamed M. El-Khalafy
{"title":"Assessment of plant diversity of endemic species of the Saharo-Arabian region in Egypt","authors":"Asmaa S. Abo Hatab, Yassin M. Al-Sodany, Kamal H. Shaltout, Soliman A. Haroun, Mohamed M. El-Khalafy","doi":"10.1007/s40333-024-0102-3","DOIUrl":"https://doi.org/10.1007/s40333-024-0102-3","url":null,"abstract":"<p>Savanna, semi-deserts, and hot deserts characterize the Saharo-Arabian region, which includes Morocco, Mauretania, Algeria, Tunisia, Libya, Egypt, Palestine, Kuwait, Saudi Arabia, Qatar, Bahrain, the United Arab Emirates, Oman, Yemen, southern Jordan, Syria, Iraq, Iran, Afghanistan, Pakistan, and northern India. Its neighboring regions, the Sudano-Zambezian region belonging to the Paleotropical Kingdom and the Mediterranean and Irano-Turanian regions included in the Holarctic Kingdom, share a large portion of their flora with the Saharo-Arabian region. Despite the widespread acknowledgment of the region’s global importance for plant diversity, an up to date list of the Saharo-Arabian endemics is still unavailable. The available data are frequently insufficient or out of date at both the whole global and the national scales. Therefore, the present study aims at screening and verifying the Saharo-Arabian endemic plants and determining the phytogeographical distribution of these taxa in the Egyptian flora. Hence, a preliminary list of 429 Saharo-Arabian endemic plants in Egypt was compiled from the available literature. Indeed, by excluding the species that were recorded in any countries or regions outside the Saharo-Arabian region based on different literature, database reviews, and websites, the present study has reduced this number to 126 taxa belonging to 87 genera and 37 families. Regarding the national geographic distribution, South Sinai is the richest region with 83 endemic species compared with other eight phytogeographic regions in Egypt, followed by the Isthmic Desert (the middle of Sinai Peninsula, 53 taxa). Sahara regional subzone (SS1) distributes all the 126 endemic species, Arabian regional subzone (SS2) owns 79 taxa, and Nubo-Sindian subzone (SS3) distributes only 14 endemics. Seven groups were recognized at the fourth level of classification as a result of the application of the two-way indicator species analysis (TWINSPAN) to the Saharo-Arabian endemic species in Egypt, i.e., I <i>Asphodelus refractus</i> group, II <i>Agathophora alopecuroides</i> var. <i>papillosa</i> group, III <i>Anvillea garcinii</i> group, IV <i>Reseda muricata</i> group, V <i>Agathophora alopecuroides</i> var. <i>alopecuroides</i> group, VI <i>Scrophularia deserti</i> group, and VII <i>Astragalus schimperi</i> group. It’s crucial to clearly define the Saharo-Arabian endemics and illustrate an updated verified database of these taxa for a given territory for providing future management plans that support the conservation and sustainable use of these valuable species under current thought-provoking devastating impacts of rapid anthropogenic and climate change in this region.</p>","PeriodicalId":49169,"journal":{"name":"Journal of Arid Land","volume":"7 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141863550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Trade-offs and synergies between ecosystem services in Yutian County along the Keriya River Basin, Northwest China","authors":"Muyibul Zubaida","doi":"10.1007/s40333-024-0103-2","DOIUrl":"https://doi.org/10.1007/s40333-024-0103-2","url":null,"abstract":"<p>The Keriya River Basin is located in an extremely arid climate zone on the southern edge of the Tarim Basin of Northwest China, exhibiting typical mountain-oasis-desert distribution characteristics. In recent decades, climate change and human activities have exerted significant impacts on the service functions of watershed ecosystems. However, the trade-offs and synergies between ecosystem services (ESs) have not been thoroughly examined. This study aims to reveal the spatiotemporal changes in ESs within the Keriya River Basin from 1995 to 2020 as well as the trade-offs and synergies between ESs. Leveraging the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) and Revised Wind Erosion Equation (RWEQ) using land use/land cover (LULC), climate, vegetation, soil, and hydrological data, we quantified the spatiotemporal changes in the five principal ESs (carbon storage, water yield, food production, wind and sand prevention, and habitat quality) of the watershed from 1995 to 2020. Spearman correlation coefficients were used to analyze the trade-offs and synergies between ES pairs. The findings reveal that water yield, carbon storage, and habitat quality exhibited relatively high levels in the upstream, while food production and wind and sand prevention dominated the midstream and downstream, respectively. Furthermore, carbon storage, food production, wind and sand prevention, and habitat quality demonstrated an increase at the watershed scale while water yield exhibited a decline from 1995 to 2020. Specifically, carbon storage, wind and sand prevention, and habitat quality presented an upward trend in the upstream but downward trend in the midstream and downstream. Food production in the midstream showed a continuously increasing trend during the study period. Trade-off relationships were identified between water yield and wind and sand prevention, water yield and carbon storage, food production and water yield, and habitat quality and wind and sand prevention. Prominent temporal and spatial synergistic relationships were observed between different ESs, notably between carbon storage and habitat quality, carbon storage and food production, food production and wind and sand prevention, and food production and habitat quality. Water resources emerged as a decisive factor for the sustainable development of the basin, thus highlighting the intricate trade-offs and synergies between water yield and the other four services, particularly the relationship with food production, which warrants further attention. This research is of great significance for the protection and sustainable development of river basins in arid areas.</p>","PeriodicalId":49169,"journal":{"name":"Journal of Arid Land","volume":"124 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141863442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparison of isotope-based linear and Bayesian mixing models in determining moisture recycling ratio","authors":"Yanqiong Xiao, Liwei Wang, Shengjie Wang, Kei Yoshimura, Yudong Shi, Xiaofei Li, Athanassios A. Argiriou, Mingjun Zhang","doi":"10.1007/s40333-024-0016-0","DOIUrl":"https://doi.org/10.1007/s40333-024-0016-0","url":null,"abstract":"<p>Stable water isotopes are natural tracers quantifying the contribution of moisture recycling to local precipitation, i.e., the moisture recycling ratio, but various isotope-based models usually lead to different results, which affects the accuracy of local moisture recycling. In this study, a total of 18 stations from four typical areas in China were selected to compare the performance of isotope-based linear and Bayesian mixing models and to determine local moisture recycling ratio. Among the three vapor sources including advection, transpiration, and surface evaporation, the advection vapor usually played a dominant role, and the contribution of surface evaporation was less than that of transpiration. When the abnormal values were ignored, the arithmetic averages of differences between isotope-based linear and the Bayesian mixing models were 0.9% for transpiration, 0.2% for surface evaporation, and −1.1% for advection, respectively, and the medians were 0.5%, 0.2%, and −0.8%, respectively. The importance of transpiration was slightly less for most cases when the Bayesian mixing model was applied, and the contribution of advection was relatively larger. The Bayesian mixing model was found to perform better in determining an efficient solution since linear model sometimes resulted in negative contribution ratios. Sensitivity test with two isotope scenarios indicated that the Bayesian model had a relatively low sensitivity to the changes in isotope input, and it was important to accurately estimate the isotopes in precipitation vapor. Generally, the Bayesian mixing model should be recommended instead of a linear model. The findings are useful for understanding the performance of isotope-based linear and Bayesian mixing models under various climate backgrounds.</p>","PeriodicalId":49169,"journal":{"name":"Journal of Arid Land","volume":"44 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141863446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Extreme drought with seasonal timing consistently promotes CH4 uptake through inconsistent pathways in a temperate grassland, China","authors":"Wenwen Zhang, Yue Pan, Fuqi Wen, Juanjuan Fu, Yanbin Hao, Tianming Hu, Peizhi Yang","doi":"10.1007/s40333-024-0017-z","DOIUrl":"https://doi.org/10.1007/s40333-024-0017-z","url":null,"abstract":"<p>Methane (CH<sub>4</sub>) is a potent greenhouse gas that has a substantial impact on global warming due to its substantial influence on the greenhouse effect. Increasing extreme precipitation events, such as drought, attributable to global warming that caused by greenhouse gases, exert a profound impact on the intricate biological processes associated with CH<sub>4</sub> uptake. Notably, the timing of extreme drought occurrence emerges as a pivotal factor influencing CH<sub>4</sub> uptake, even when the degree of drought remains constant. However, it is still unclear how the growing season regulates the response of CH<sub>4</sub> uptake to extreme drought. In an effort to bridge this knowledge gap, we conducted a field manipulative experiment to evaluate the impact of extreme drought on CH<sub>4</sub> uptake during early, middle, and late growing stages in a temperate steppe of Inner Mongolia Autonomous Region, China. The result showed that all extreme drought consistently exerted positive effects on CH<sub>4</sub> uptake regardless of seasonal timing. However, the magnitude of this effect varied depending on the timing of season, as evidenced by a stronger effect in early growing stage than in middle and late growing stages. Besides, the pathways of CH<sub>4</sub> uptake were different from seasonal timing. Extreme drought affected soil physical-chemical properties and aboveground biomass (AGB), consequently leading to changes in CH<sub>4</sub> uptake. The structural equation model showed that drought both in the early and middle growing stages enhanced CH<sub>4</sub> uptake due to reduced soil water content (SWC), leading to a decrease in NO<sub>3</sub><sup>−</sup>-N and an increase in <i>pmo</i>A abundance. However, drought in late growing stage primarily enhanced CH<sub>4</sub> uptake only by decreasing SWC. Our results suggested that seasonal timing significantly contributed to regulate the impacts of extreme drought pathways and magnitudes on CH<sub>4</sub> uptake. The findings can provide substantial implications for understanding how extreme droughts affect CH<sub>4</sub> uptake and improve the prediction of potential ecological consequence under future climate change.</p>","PeriodicalId":49169,"journal":{"name":"Journal of Arid Land","volume":"146 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141863445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Temporal and spatial variation and prediction of water yield and water conservation in the Bosten Lake Basin based on the PLUS-InVEST model","authors":"Jiazhen Chen, Alimujiang Kasimu, Rukeya Reheman, Bohao Wei, Fuqiang Han, Yan Zhang","doi":"10.1007/s40333-024-0101-4","DOIUrl":"https://doi.org/10.1007/s40333-024-0101-4","url":null,"abstract":"<p>To comprehensively evaluate the alterations in water ecosystem service functions within arid watersheds, this study focused on the Bosten Lake Basin, which is situated in the arid region of Northwest China. The research was based on land use/land cover (LULC), natural, socioeconomic, and accessibility data, utilizing the Patch-level Land Use Simulation (PLUS) and Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) models to dynamically assess LULC change and associated variations in water yield and water conservation. The analyses included the evaluation of contribution indices of various land use types and the investigation of driving factors that influence water yield and water conservation. The results showed that the change of LULC in the Bosten Lake Basin from 2000 to 2020 showed a trend of increasing in cultivated land and construction land, and decreasing in grassland, forest, and unused land. The unused land of all the three predicted scenarios of 2030 (S1, a natural development scenario; S2, an ecological protection scenario; and S3, a cultivated land protection scenario) showed a decreasing trend. The scenarios S1 and S3 showed a trend of decreasing in grassland and increasing in cultivated land; while the scenario S2 showed a trend of decreasing in cultivated land and increasing in grassland. The water yield of the Bosten Lake Basin exhibited an initial decline followed by a slight increase from 2000 to 2020. The areas with higher water yield values were primarily located in the northern section of the basin, which is characterized by higher altitude. Water conservation demonstrated a pattern of initial decrease followed by stabilization, with the northeastern region demonstrating higher water conservation values. In the projected LULC scenarios of 2030, the estimated water yield under scenarios S1 and S3 was marginally greater than that under scenario S2; while the level of water conservation across all three scenarios remained rather consistent. The results showed that Hejing County is an important water conservation function zone, and the eastern part of the Xiaoyouledusi Basin is particularly important and should be protected. The findings of this study offer a scientific foundation for advancing sustainable development in arid watersheds and facilitating efficient water resource management.</p>","PeriodicalId":49169,"journal":{"name":"Journal of Arid Land","volume":"73 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141863448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of alpine meadow surface crack and its correlation with root-soil properties","authors":"Yuechen Wu, Haili Zhu, Yu Zhang, Hailong Zhang, Guosong Liu, Yabin Liu, Guorong Li, Xiasong Hu","doi":"10.1007/s40333-024-0100-5","DOIUrl":"https://doi.org/10.1007/s40333-024-0100-5","url":null,"abstract":"<p>Quantifying surface cracks in alpine meadows is a prerequisite and a key aspect in the study of grassland crack development. Crack characterization indices are crucial for the quantitative characterization of complex cracks, serving as vital factors in assessing the degree of cracking and the development morphology. So far, research on evaluating the degree of grassland degradation through crack characterization indices is rare, especially the quantitative analysis of the development of surface cracks in alpine meadows is relatively scarce. Therefore, based on the phenomenon of surface cracking during the degradation of alpine meadows in some regions of the Qinghai-Tibet Plateau, we selected the alpine meadow in the Huangcheng Mongolian Township, Menyuan Hui Autonomous County, Qinghai Province, China as the study area, used unmanned aerial vehicle (UAV) sensing technology to acquire low-altitude images of alpine meadow surface cracks at different degrees of degradation (light, medium, and heavy degradation), and analyzed the representative metrics characterizing the degree of crack development by interpreting the crack length, length density, branch angle, and burrow (rat hole) distribution density and combining them with <i>in situ</i> crack width and depth measurements. Finally, the correlations between the crack characterization indices and the soil and root parameters of sample plots at different degrees of degradation in the study area were analyzed using the grey relation analysis. The results revealed that with the increase of degradation, the physical and chemical properties of soil and the mechanical properties of root-soil composite changed significantly, the vegetation coverage reduced, and the root system aggregated in the surface layer of alpine meadow. As the degree of degradation increased, the fracture morphology developed from “linear” to “dendritic”, and eventually to a complex and irregular “polygonal” pattern. The crack length, width, depth, and length density were identified as the crack characterization indices via analysis of variance. The results of grey relation analysis also revealed that the crack length, width, depth, and length density were all highly correlated with root length density, and as the degradation of alpine meadows intensified, the underground biomass increased dramatically, forming a dense layer of grass felt, which has a significant impact on the formation and expansion of cracks.</p>","PeriodicalId":49169,"journal":{"name":"Journal of Arid Land","volume":"44 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141863691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haitian Lu, Ruifeng Zhao, Liu Zhao, Jiaxin Liu, Binyang Lyu, Xinyue Yang
{"title":"Impact of climate change and human activities on the spatiotemporal dynamics of surface water area in Gansu Province, China","authors":"Haitian Lu, Ruifeng Zhao, Liu Zhao, Jiaxin Liu, Binyang Lyu, Xinyue Yang","doi":"10.1007/s40333-024-0078-z","DOIUrl":"https://doi.org/10.1007/s40333-024-0078-z","url":null,"abstract":"<p>Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas. This study took Gansu Province, China, a typical area with complex terrain and variable climate, as the research subject. Based on Google Earth Engine, we used Landsat data and the Open-surface Water Detection Method with Enhanced Impurity Control method to monitor the spatiotemporal dynamics of surface water area in Gansu Province from 1985 to 2022, and quantitatively analyzed the main causes of regional differences in surface water area. The findings revealed that surface water area in Gansu Province expanded by 406.88 km<sup>2</sup> from 1985 to 2022. Seasonal surface water area exhibited significant fluctuations, while permanent surface water area showed a steady increase. Notably, terrestrial water storage exhibited a trend of first decreasing and then increasing, correlated with the dynamics of surface water area. Climate change and human activities jointly affected surface hydrological processes, with the impact of climate change being slightly higher than that of human activities. Spatially, climate change affected the ‘source’ of surface water to a greater extent, while human activities tended to affect the ‘destination’ of surface water. Challenges of surface water resources faced by inland arid and semi-arid areas like Gansu Province are multifaceted. Therefore, we summarized the surface hydrology patterns typical in inland arid and semiarid areas and tailored surface water ‘supply-demand’ balance strategies. The study not only sheds light on the dynamics of surface water area in Gansu Province, but also offers valuable insights for ecological protection and surface water resource management in inland arid and semi-arid areas facing water scarcity.</p>","PeriodicalId":49169,"journal":{"name":"Journal of Arid Land","volume":"10 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141863447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}