Natural Language Engineering最新文献

筛选
英文 中文
A Semantic Parsing Pipeline for Context-Dependent Question Answering over Temporally Structured Data. 在时态结构数据上进行上下文相关问题解答的语义解析管道。
IF 2.5 3区 计算机科学
Natural Language Engineering Pub Date : 2023-05-01 Epub Date: 2021-10-29 DOI: 10.1017/s1351324921000292
Charles Chen, Razvan Bunescu, Cindy Marling
{"title":"A Semantic Parsing Pipeline for Context-Dependent Question Answering over Temporally Structured Data.","authors":"Charles Chen, Razvan Bunescu, Cindy Marling","doi":"10.1017/s1351324921000292","DOIUrl":"10.1017/s1351324921000292","url":null,"abstract":"<p><p>We propose a new setting for question answering in which users can query the system using both natural language and direct interactions within a graphical user interface that displays multiple time series associated with an entity of interest. The user interacts with the interface in order to understand the entity's state and behavior, entailing sequences of actions and questions whose answers may depend on previous factual or navigational interactions. We describe a pipeline implementation where spoken questions are first transcribed into text which is then semantically parsed into logical forms that can be used to automatically extract the answer from the underlying database. The speech recognition module is implemented by adapting a pre-trained LSTM-based architecture to the user's speech, whereas for the semantic parsing component we introduce an LSTM-based encoder-decoder architecture that models context dependency through copying mechanisms and multiple levels of attention over inputs and previous outputs. When evaluated separately, with and without data augmentation, both models are shown to substantially outperform several strong baselines. Furthermore, the full pipeline evaluation shows only a small degradation in semantic parsing accuracy, demonstrating that the semantic parser is robust to mistakes in the speech recognition output. The new question answering paradigm proposed in this paper has the potential to improve the presentation and navigation of the large amounts of sensor data and life events that are generated in many areas of medicine.</p>","PeriodicalId":49143,"journal":{"name":"Natural Language Engineering","volume":"29 2","pages":"769-793"},"PeriodicalIF":2.5,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10348695/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10184074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信