Fernando Gutiérrez Del Burgo, María Ángeles García-López, Tirso Pons, Enrique Vázquez de Luis, Carlos Martínez-A, Ricardo Villares
{"title":"The chromatin reader Dido3 is a regulator of the gene network that controls B cell differentiation.","authors":"Fernando Gutiérrez Del Burgo, María Ángeles García-López, Tirso Pons, Enrique Vázquez de Luis, Carlos Martínez-A, Ricardo Villares","doi":"10.1186/s13578-025-01394-x","DOIUrl":"https://doi.org/10.1186/s13578-025-01394-x","url":null,"abstract":"<p><p>The development of hematopoietic cell lineages is a highly complex process governed by a delicate interplay of various transcription factors. The expression of these factors is influenced, in part, by epigenetic signatures that define each stage of cell differentiation. In particular, the formation of B lymphocytes depends on the sequential silencing of stemness genes and the balanced expression of interdependent transcription factors, along with DNA rearrangement. We have investigated the impact of Dido3 deficiency, a protein involved in chromatin status readout, on B cell differentiation within the hematopoietic compartment of mice. Our findings revealed significant impairments in the successive stages of B cell development. The absence of Dido3 resulted in remarkable alterations in the expression of essential transcription factors and differentiation markers, which are crucial for orchestrating the differentiation process. Additionally, the somatic recombination process, responsible for generation of antigen receptor diversity, was also adversely affected. These observations highlight the vital role of epigenetic regulation, particularly the involvement of Dido3, in ensuring proper B cell differentiation. This study reveals new mechanisms underlying disruptive alterations, deepening our understanding of hematopoiesis and may potentially lead to insights that aid in the development of therapeutic interventions for disorders involving aberrant B cell development.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"15 1","pages":"56"},"PeriodicalIF":6.1,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12034202/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144055257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xu Yang, Lan Li, Wenzheng Qu, Xuejun Cheng, Jinyu Zhang, Yan Sun, Suxiao Liu, Guoping Peng, Rui Zheng, Xuekun Li
{"title":"Zmynd11 is essential for neurogenesis by coordinating H3K36me3 modification of Epha2 and PI3K signaling pathway.","authors":"Xu Yang, Lan Li, Wenzheng Qu, Xuejun Cheng, Jinyu Zhang, Yan Sun, Suxiao Liu, Guoping Peng, Rui Zheng, Xuekun Li","doi":"10.1186/s13578-025-01392-z","DOIUrl":"https://doi.org/10.1186/s13578-025-01392-z","url":null,"abstract":"<p><p>10p15.3 deletion syndrome is caused by the deficiency of MYND-type zinc finger domain-containing protein 11 (ZMYND11) and featured by global developmental delay, intellectual disability, behavioral abnormalities, etc. Although the roles of Zmynd11 is intensively studied in cancer, the function and associated mechanisms of Zmynd11 in neurodevelopment remain largely unknown. Here, we show that Zmynd11 displays abundant and dynamic expression pattern during embryonic neurodevelopment. Zmynd11 deficiency impairs embryonic neurogenesis and neurodevelopment in vitro and in vivo, and inhibits morphological maturation of neurons. Mechanistically, Zmynd11 deficiency leads to decreased Epha2 and disrupts PI3K signaling pathway. Under Zmynd11 deficient condition, H3K36me3 modification on Epha2 promoter abnormally increases and the binding of RNA polymerase II decreases. The restoration of PI3K signaling pathway by exogenous Epha2 can rescue aberrant neurogenesis induced by Zmynd11 depletion in vitro and in vivo. Collectively, our study reveals the essential function of Zmynd11 in neurogenesis via coordinating H3K36me3 modification of Epha2 and PI3K signaling pathway.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"15 1","pages":"55"},"PeriodicalIF":6.1,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12032794/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144055845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriele Sakalauskaite, Michael Weingartner, Sophie Ebert, Gina Boot, Thomas Bock, Julia Birk, Maria Tsachaki, John W Gallon, Salvatore Piscuoglio, Alex Odermatt
{"title":"A BioID-based approach uncovers the interactome of hexose-6-phosphate dehydrogenase in breast cancer cells and identifies anterior gradient protein 2 as an interacting partner.","authors":"Gabriele Sakalauskaite, Michael Weingartner, Sophie Ebert, Gina Boot, Thomas Bock, Julia Birk, Maria Tsachaki, John W Gallon, Salvatore Piscuoglio, Alex Odermatt","doi":"10.1186/s13578-025-01388-9","DOIUrl":"https://doi.org/10.1186/s13578-025-01388-9","url":null,"abstract":"<p><strong>Background: </strong>Hexose-6-phosphate dehydrogenase (H6PD) catalyzes the first two steps of the pentose-phosphate-pathway (PPP) within the endoplasmic reticulum, generating NADPH. H6PD modulates essential physiological processes, including energy and redox metabolism. Its sole reported interacting partner is 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1), utilizing NADPH to reactivate glucocorticoids, linking energy status with hormonal response. Previous studies showed that loss of H6PD affects breast cancer cell properties, independent of 11β-HSD1. It remains unknown whether this is due to impaired concentrations of NADPH or PPP products downstream of H6PD. To gain insight into novel roles and pathways influenced by this enzyme, we aimed to assess the H6PD interactome.</p><p><strong>Results: </strong>We adapted the proximity-dependent Biotin Identification (BioID) method to identify novel H6PD interacting partners. First, we validated the method and confirmed the known interaction between H6PD and 11β-HSD1. Next, we constructed a triple-negative breast cancer MDA-MB-231 cell clone stably expressing a H6PD-biotin ligase fusion protein. Enriched biotinylated proteins were analyzed by mass-spectrometry and potential candidates assessed further by co-immunoprecipitation and functional assays. The resulting interactome revealed proteins of the calreticulin/calnexin cycle, unfolded-protein response (UPR) and chaperone activation pathways. Due to its known association with breast cancer, we examined the PDI Anterior gradient protein 2 (AGR2) as H6PD interacting partner. Gene set enrichment analysis revealed multiple overlapping pathways enriched in breast cancer tissues with relatively high H6PD and AGR2 expression. These included glycolysis, fatty acid metabolism, hypoxia, angiogenesis and epithelial to mesenchymal transition. Co-immunoprecipitation (Co-IP) from MCF7 cells confirmed a physical interaction between H6PD and AGR2. ARG2 knockdown in these cells increased H6PD protein levels but decreased activity. Coexpression with AGR2 in HEK-293 cells did not affect expression but enhanced H6PD activity.</p><p><strong>Conclusion: </strong>BioID was successfully applied in the endoplasmic reticulum to identify AGR2 as H6PD interactor. This was confirmed using Co-IP from MCF7 cells endogenously expressing both proteins. The results indicate that AGR2 controls H6PD protein expression and enhances its activity. Whether higher H6PD activity due to increased AGR2 expression promotes a more aggressive cancer cell phenotype, for example by altering energy metabolism, Ca<sup>2+</sup>-related processes or UPR and chaperone activation pathways, warrants further investigations.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"15 1","pages":"54"},"PeriodicalIF":6.1,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12032772/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144062598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chenchen Wang, Junshi Zhang, Yali Xu, Jiawei Zhao, Manman Qiu, Xingli Zhao, Guoqiang Li, Wentao Qiao, Juan Tan
{"title":"SAP30 deacetylates the Tas protein to inhibit PFV replication.","authors":"Chenchen Wang, Junshi Zhang, Yali Xu, Jiawei Zhao, Manman Qiu, Xingli Zhao, Guoqiang Li, Wentao Qiao, Juan Tan","doi":"10.1186/s13578-025-01400-2","DOIUrl":"https://doi.org/10.1186/s13578-025-01400-2","url":null,"abstract":"<p><strong>Background: </strong>Foamy viruses (FVs), a unique class of retroviruses, establish lifelong latent infections in the host without causing symptoms, contributing to the relatively slow progress in FV research. However, key mutations in FVs can result in severe consequences due to their broad cellular tropism, underscoring the importance of studying latent FV infections.</p><p><strong>Results: </strong>To identify new host proteins involved in the replication of prototype foamy virus (PFV), we previously infected the human fibrosarcoma cell line HT1080 with PFV and performed transcriptomic sequencing. The analysis revealed a significant upregulation of SAP30 mRNA levels following PFV infection. Further experiments demonstrated that PFV infection enhances SAP30 promoter activity via the Tas protein, leading to increased SAP30 mRNA and protein expression. Overexpression of SAP30 inhibited PFV replication, whereas knockdown of endogenous SAP30 enhanced PFV replication. Furthermore, SAP30 interacted with the Tas protein to induce its deacetylation, thereby suppressing Tas-mediated transactivation of the PFV LTR and IP promoters. The Sin3 interaction domain at the C-terminus of SAP30 was identified as the critical domain for inhibiting PFV transcription.</p><p><strong>Conclusions: </strong>Our findings suggest that SAP30 inhibits PFV replication by deacetylating the Tas protein, thereby disrupting its transcriptional activation function.</p><p><strong>Key words: </strong>prototype foamy virus; SAP30; Tas; transcription; deacetylation.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"15 1","pages":"53"},"PeriodicalIF":6.1,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12023400/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144024056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiao-Lin Lin, Yi-Min Zhou, Ke Meng, Jia-Yi Yang, Han Zhang, Jin-Hua Lin, Hai-Yan Wu, Xiao-Yu Wang, Hui Zhao, Shan-Shan Feng, Kyu-Sang Park, Dong-Qing Cai, Li Zheng, Xu-Feng Qi
{"title":"CRISPR/Cas-mediated mRNA knockdown in the embryos of Xenopus tropicalis.","authors":"Xiao-Lin Lin, Yi-Min Zhou, Ke Meng, Jia-Yi Yang, Han Zhang, Jin-Hua Lin, Hai-Yan Wu, Xiao-Yu Wang, Hui Zhao, Shan-Shan Feng, Kyu-Sang Park, Dong-Qing Cai, Li Zheng, Xu-Feng Qi","doi":"10.1186/s13578-025-01397-8","DOIUrl":"https://doi.org/10.1186/s13578-025-01397-8","url":null,"abstract":"<p><p>The Xenopus tropicalis (Western clawed frog) is an important amphibian model for genetics, developmental and regenerative biology, due to its diploid genetic background and short generation time. CRISPR-Cas13 and CRISPR interference (CRISPRi) systems have recently been employed to suppress mRNA expression in many organisms such as yeast, plants, and mammalian cells. However, no systematic study of these two systems has been carried out in Xenopus tropicalis. Here, we show that CRISPRi rather than CRISPR-Cas13 is an effective and suitable approach to suppress specific mRNA transcription in Xenopus tropicalis embryos. We demonstrated that CRISPRi composed of dCas9 and KRAB-MeCP2 (dCas9-KM) can efficiently target exogenous and endogenous transcripts in Xenopus tropicalis embryos. Moreover, our data suggest that the new KRAB domain from ZIM3 protein (ZIM3-KRAB, ZIM3K) alone has a comparable transcript targeting capacity in Xenopus tropicalis embryos to the traditional fusion repressor KRAB-MeCP2 in which the KRAB domain from KOX1 protein. In conclusion, our results demonstrate that CRISPRi rather than CRISPR-Cas13 is an efficient knockdown platform to explore specific gene function in Xenopus tropicalis embryos.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"15 1","pages":"52"},"PeriodicalIF":6.1,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12020200/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144054159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Min Liu, De-Sheng Zou, Xue-Ying Zhang, De-Hua Wang
{"title":"Huddling behavior regulate adaptive thermogenesis in Brandt's voles (Lasiopodomys brandtii).","authors":"Min Liu, De-Sheng Zou, Xue-Ying Zhang, De-Hua Wang","doi":"10.1186/s13578-025-01391-0","DOIUrl":"https://doi.org/10.1186/s13578-025-01391-0","url":null,"abstract":"<p><strong>Background: </strong>Brown adipose tissue (BAT) is the main site of non-shivering thermogenesis (NST) in small mammals, playing an important role in maintaining body temperature and energy balance. Huddling is a behavioral strategy for small rodents to save energy and improve the survival under cold environments. However, the way of huddling behavior influence on hypothalamus, which regulate BAT thermogenesis in small mammals is rarely illustrated. We used male Brandt's voles (Lasiopodomys brandtii) to explore the possible regulation mechanisms in BAT thermogenesis by the way of cold acclimation and huddling behavior.</p><p><strong>Results: </strong>There is a strong relationship between huddling behavior and NST in BAT. The hypothalamus, which is impacted by huddling behavior, influences PPAR signaling pathway in the BAT, and induces thermogenesis through Calcium signaling pathway. PPAR pathway causes crosstalk among NF-κB signaling pathway, Thermogenesis and Fatty acid metabolism to perform functions for thermogenesis.</p><p><strong>Conclusions: </strong>The results suggest that huddling behavior can modulate adaptive thermogenesis in BAT. Cold acclimation and huddling had a synergistic effect on the regulation of thermogenic function, the hypothalamus mediates thermogenic changes in BAT induced by huddling behavior. In BAT, the specific pathway of thermogenesis is as follows: TRAF6-PPARγ-UCP1-SUCLG1.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"15 1","pages":"51"},"PeriodicalIF":6.1,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12020165/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144002801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanliang Jiang, Yongliang Zhao, Jie Deng, Xiaoyan Wu, Jian Li, Dong Guo, Ke Xu, Yali Qin, Mingzhou Chen
{"title":"Peptides targeting RAB11A-FIP2 complex inhibit HPIV3, RSV, and IAV replication as broad-spectrum antivirals.","authors":"Yanliang Jiang, Yongliang Zhao, Jie Deng, Xiaoyan Wu, Jian Li, Dong Guo, Ke Xu, Yali Qin, Mingzhou Chen","doi":"10.1186/s13578-025-01384-z","DOIUrl":"https://doi.org/10.1186/s13578-025-01384-z","url":null,"abstract":"<p><strong>Background: </strong>The cytoskeletal framework plays a critical role in the early stages of human parainfluenza virus type 3 (HPIV3) replication, including viral mRNA synthesis and translation. However, its contribution to later stages of infection, particularly in the context of RNA biology, is not well understood. This study focuses on the role of the cytoskeleton in viral nucleocapsid (vRNP, a ribonucleoprotein complex essential for RNA virus replication) transport, assembly, and budding, and explores the cooperative role of the small GTPase RAB11A and its effector RAB11 family interacting protein 2 (FIP2) in vRNP trafficking. These processes are crucial for respiratory RNA viruses like respiratory syncytial virus (RSV) and influenza A virus (IAV), highlighting the importance of RNA-protein interactions in viral pathogenesis.</p><p><strong>Results: </strong>Through the use of cytoskeleton-depolymerizing agents, the study identified actin microfilaments as indispensable for vRNP transport, viral assembly, and viral particle budding. It also revealed the importance of the RAB11A-FIP2 complex in these processes, which are critical for the intracellular trafficking of viral RNA. The development of peptides targeting the RAB11A-FIP2 complex led to the suppression of RAB11A function in infected cells, resulting in vRNP aggregation in the cytoplasm and reduced viral replication. The peptide YT-DRI showed strong broad-spectrum antiviral activity against HPIV3, RSV, and IAV in cellular and animal models and was effective against co-infections in vitro. The antiviral effects of YT-DRI were abolished upon deletion of RAB11A or core components of the RAB11A pathway.</p><p><strong>Conclusion: </strong>This work introduces a promising broad-spectrum antiviral strategy for respiratory tract infections by targeting the RAB11A-FIP2 complex, which regulates the transport and assembly of viral RNA. By disrupting this pathway, YT-DRI effectively inhibits the replication of multiple respiratory RNA viruses, including HPIV3, RSV, and IAV.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"15 1","pages":"50"},"PeriodicalIF":6.1,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12013085/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144058290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular mechanisms of endothelial-mesenchymal transition and its pathophysiological feature in cerebrovascular disease.","authors":"Huimin Jiang, Yifan Zhou, Weiyue Zhang, Hui Li, Wei Ma, Xunming Ji, Chen Zhou","doi":"10.1186/s13578-025-01393-y","DOIUrl":"https://doi.org/10.1186/s13578-025-01393-y","url":null,"abstract":"<p><p>The phenomenon of endothelial-mesenchymal transition (EndMT), a distinct subtype of epithelial-mesenchymal transition (EMT), has garnered significant attention from scholars. EndMT refers to the process whereby endothelial cells (ECs) transform into mesenchymal cells in response to various stimuli, resulting in the loss of their original characteristics. This process has diverse implications in both physiological and pathological states. Under physiological conditions, EndMT plays a crucial role in the development of the cardiovascular system. Conversely, under pathological conditions, EndMT has been identified as a pivotal factor in the development of cardiovascular diseases. Nonetheless, a comprehensive overview of EndMT in cerebrovascular disease is currently lacking. Here, we discuss the heterogeneity of EndMT occurrence and the regulatory factors involved in its development and analyze the feasibility of EndMT as a therapeutic target, aiming to provide a solid theoretical foundation and evidence to address diseases caused by pathological EndMT.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"15 1","pages":"49"},"PeriodicalIF":6.1,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12008988/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144036270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nicotinamide mononucleotide promotes female germline stem cell proliferation by activating the H4K16ac-Hmgb1-Fyn-PLD signaling pathway through epigenetic remodeling.","authors":"Hong Zhou, Yujie Liu, Geng G Tian, Ji Wu","doi":"10.1186/s13578-025-01387-w","DOIUrl":"https://doi.org/10.1186/s13578-025-01387-w","url":null,"abstract":"<p><strong>Background: </strong>Nicotinamide mononucleotide (NMN), an endogenous nucleotide essential for various physiological processes, has an unclear role and regulatory mechanisms in female germline stem cell (FGSC) development.</p><p><strong>Results: </strong>We demonstrate that NMN significantly enhances FGSC viability and proliferation. Quantitative acetylation proteomics revealed that NMN markedly increases the acetylation of histone H4 at lysine 16 (H4K16ac). Subsequent chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) identified high mobility group box 1 (Hmgb1) as a downstream target of H4K16ac, a finding further validated by ChIP-qPCR. Knockdown of Hmgb1 reduced FGSC proliferation by disrupting cell cycle progression, inducing apoptosis, and decreasing chromatin accessibility. High-throughput chromosome conformation capture (Hi-C) analysis showed that Hmgb1 knockdown induced A/B compartment switching, increased the number of topologically associating domains (TADs), and decreased chromatin loop formation in FGSCs. Notably, the chromatin loop at the promoter region of Fyn proto-oncogene (Fyn) disappeared following Hmgb1 knockdown. ChIP-qPCR and dual-luciferase reporter assays further confirmed the interaction between Hmgb1 and the Fyn promoter. Importantly, Fyn overexpression reversed the inhibitory effects of Hmgb1 knockdown on FGSC proliferation. Proteomic analysis suggested this rescue was mediated through the phospholipase D (PLD) signaling pathway, as Fyn overexpression selectively enhanced the phosphorylation of PLD1 at threonine 147 without affecting serine 561. Furthermore, treatment with 5-fluoro-2-indolyldechlorohaloamide, a PLD inhibitor, nullified the pro-proliferative effects of Fyn overexpression.</p><p><strong>Conclusions: </strong>Our findings reveal that NMN promotes FGSC proliferation by activating the H4K16ac-Hmgb1-Fyn-PLD signaling pathway through epigenetic remodeling. These results deepen our understanding of FGSC proliferation and highlight potential therapeutic avenues for advancing FGSC applications in reproductive medicine.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"15 1","pages":"48"},"PeriodicalIF":6.1,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12004683/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144003074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ke Yang, Guangqin Li, Qihong Li, Wei Wang, Xu Zhao, Nan Shao, Hui Qiu, Jing Liu, Lin Xu, Juanjuan Zhao
{"title":"Distribution of gut microbiota across intestinal segments and their impact on human physiological and pathological processes.","authors":"Ke Yang, Guangqin Li, Qihong Li, Wei Wang, Xu Zhao, Nan Shao, Hui Qiu, Jing Liu, Lin Xu, Juanjuan Zhao","doi":"10.1186/s13578-025-01385-y","DOIUrl":"https://doi.org/10.1186/s13578-025-01385-y","url":null,"abstract":"<p><p>In recent years, advancements in metagenomics, metabolomics, and single-cell sequencing have enhanced our understanding of the intricate relationships between gut microbiota and their hosts. Gut microbiota colonize humans from birth, with their initial composition significantly influenced by the mode of delivery and feeding method. During the transition from infancy to early childhood, exposure to a diverse diet and the maturation of the immune system lead to the gradual stabilization of gut microbiota's composition and distribution. Numerous studies have demonstrated that gut microbiota can influence a wide range of physiological functions and pathological processes by interacting with various tissues and organs through the gut-organ axis. Different intestinal segments exhibit unique physical and chemical conditions, which leads to the formation of vertical gradients along the intestinal tract: aerobes and facultative aerobes mainly live in the small intestine and anaerobic bacteria mainly live in the large intestine, and horizontal gradients: mucosa-associated microbiota and lumen-associated microbiota. In this review, we systematically summarize the distribution characteristics of gut microbiota across six intestinal segments: duodenum, jejunum, ileum, cecum, colon, and rectum. We also draw a conclusion that gut microbiota distributed in different intestinal segments affect the progression of different diseases. We hope to elucidate the role of microbiota at specific anatomic sites within the gut in precisely regulating the processes of particular diseases, thereby providing a solid foundation for developing novel diagnostic and therapeutic strategies for related diseases.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"15 1","pages":"47"},"PeriodicalIF":6.1,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12001467/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144021841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}