Earthquakes and Structures最新文献

筛选
英文 中文
Seismic progressive collapse mitigation of buildingsusing cylindrical friction damper 圆柱摩擦阻尼器对建筑物地震渐进倒塌的抑制作用
IF 1.5 4区 工程技术
Earthquakes and Structures Pub Date : 2021-01-01 DOI: 10.12989/EAS.2021.20.1.001
M. Mirtaheri, Zobeydeh Omidi, M. Salkhordeh, H. Mirzaeefard
{"title":"Seismic progressive collapse mitigation of buildingsusing cylindrical friction damper","authors":"M. Mirtaheri, Zobeydeh Omidi, M. Salkhordeh, H. Mirzaeefard","doi":"10.12989/EAS.2021.20.1.001","DOIUrl":"https://doi.org/10.12989/EAS.2021.20.1.001","url":null,"abstract":"The occurrence of progressive collapse induced by the removal of the vertical load-bearing element in the structure, because of fire or earthquake, has been a significant challenge between structural engineers. Progressive collapse is defined as the complete failure or failure of a part of the structure, initiating with a local rupture in a part of the building and can threaten the stability of the structure. In the current study, the behavior of the structures equipped with a cylindrical friction damper, when the vertical load-bearing elements are eliminated, is considered in two cases: 1-The load-bearing element is removed under the gravity load, and 2-The load-bearing element is removed due to the earthquake lateral forces. In order to obtain a generalized result in the seismic case, 22 pair motions presented in FEMA p 695 are applied to the structures. The study has been conducted using the vertical push down analysis for the case (1), and the nonlinear time-history analysis for the second case using OpenSEES software for 5,10, and 15-story steel frames. Results indicate that, in the first case, the load coefficient, and accordingly the strength of the structure equipped with cylindrical friction dampers are increased considerably. Furthermore, the results from the second case demonstrate that the displacements, and consequently the forces imposed to the structure in the buildings equipped with the cylindrical friction damper substantially was reduced. An optimum slip load is defined in the friction dampers, which permits the damper to start its frictional damping from this threshold load. Therefore, the optimum slip load of the damper is calculated and discussed for both cases.","PeriodicalId":49080,"journal":{"name":"Earthquakes and Structures","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66424986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Ultimate shear strength prediction model for unreinforced masonryretrofitted externally with textile reinforced mortar 纺织增强砂浆外加固无筋砌体的极限抗剪强度预测模型
IF 1.5 4区 工程技术
Earthquakes and Structures Pub Date : 2020-12-01 DOI: 10.12989/EAS.2020.19.6.411
Athanasia K. Thomoglou, T. Rousakis, D. Achillopoulou, A. Karabinis
{"title":"Ultimate shear strength prediction model for unreinforced masonryretrofitted externally with textile reinforced mortar","authors":"Athanasia K. Thomoglou, T. Rousakis, D. Achillopoulou, A. Karabinis","doi":"10.12989/EAS.2020.19.6.411","DOIUrl":"https://doi.org/10.12989/EAS.2020.19.6.411","url":null,"abstract":"Unreinforced masonry (URM) walls present low shear strength and are prone to brittle failure when subjected to in-plane seismic overloads. This paper discusses the shear strengthening of URM walls with Textile Reinforced Mortar (TRM) jackets. The available literature is thoroughly reviewed and an extended database is developed including available brick, concrete and stone URM walls retrofitted and subjected to shear tests to assess their strength. Further, the experimental results of the database are compared against the available shear strength design models from ACI 549.4R-13, CNR DT 215 2018, CNR DT 200 R1/2013, Eurocode 6 and Eurocode 8 guidelines as well as Triantafillou and Antonopoulos 2000, Triantafillou 1998, Triantafillou 2016. The performance of the available models is investigated and the prediction average absolute error (AAE) is as high as 40%. A new model is proposed that takes into account the additional contribution of the reinforcing mortar layer of the TRM jacket that is usually neglected. Further, the approach identifies the plethora of different block materials, joint mortars and TRM mortars and grids and introduces rational calibration of their variable contributions on the shear strength. The proposed model provides more accurate shear strength predictions than the existing models for all different types of the URM substrates, with a low AAE equal to 22.95%.","PeriodicalId":49080,"journal":{"name":"Earthquakes and Structures","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41706253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
In-plane seismic performance of masonry wall retrofittedwith prestressed steel-bar truss 预应力钢筋桁架砌体墙面内抗震性能研究
IF 1.5 4区 工程技术
Earthquakes and Structures Pub Date : 2020-12-01 DOI: 10.12989/EAS.2020.19.6.459
S. Hwang, Sanghee Kim, Keun-Hyeok Yang
{"title":"In-plane seismic performance of masonry wall retrofittedwith prestressed steel-bar truss","authors":"S. Hwang, Sanghee Kim, Keun-Hyeok Yang","doi":"10.12989/EAS.2020.19.6.459","DOIUrl":"https://doi.org/10.12989/EAS.2020.19.6.459","url":null,"abstract":"An external prestressed steel-bar truss unit was developed as a new strengthening technology to enhance the seismic performance of an in-plane masonry wall structure while taking advantage of the benefits of a prestressed system. The presented method consists of six steel bars: two prestressed vertical bars to introduce a prestressing force on the masonry wall, two diagonal bars to resist shear deformation, and two horizontal bars to maintain the configuration. To evaluate the effects of this new technique, four full-scale specimens, including a control specimen, were tested under combined loadings that included constant-gravity axial loads and cyclic lateral loads. The experimental results were analyzed in terms of the shear strength, initial stiffness, dissipated energy, and strain history. The efficiency of the external prestressed steel-bar truss unit was validated. In particular, a retrofitted specimen with an axial load level of 0.024 exhibited a more stable post behavior and higher energy dissipation than a control specimen with an observed complete sliding failure. The four vertical bars of the adjacent retrofitting units created a virtual column, and their strain values did not change until they reached the peak shear strength. The shear capacity of the masonry wall structure with external prestressed steel-bar truss units could be predicted using the model suggested by Yang et al.","PeriodicalId":49080,"journal":{"name":"Earthquakes and Structures","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42600704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Seismic performance of non-ductile detailing RC frames:An experimental investigation 非延性钢筋混凝土细部框架抗震性能试验研究
IF 1.5 4区 工程技术
Earthquakes and Structures Pub Date : 2020-12-01 DOI: 10.12989/EAS.2020.19.6.485
B. A. Hidayat, Hsuan-Teh Hu, F. Hsiao, A. Han, Panapa Pita, Y. Haryanto
{"title":"Seismic performance of non-ductile detailing RC frames:An experimental investigation","authors":"B. A. Hidayat, Hsuan-Teh Hu, F. Hsiao, A. Han, Panapa Pita, Y. Haryanto","doi":"10.12989/EAS.2020.19.6.485","DOIUrl":"https://doi.org/10.12989/EAS.2020.19.6.485","url":null,"abstract":"Non-ductile detailing of Reinforced Concrete (RC) frames may lead to structural failure when the structure is subjected to earthquake response. These designs are generally encountered in older RC frames constructed prior to the introduction of the ductility aspect. The failure observed in the beam–column joints (BCJs) and accompanied by excessive column damage. This work examines the seismic performance and failure mode of non-ductile designed RC columns and exterior BCJs. The design was based on the actual building in Tainan City, Taiwan, that collapsed due to the 2016 Meinong earthquake. Hence, an experimental investigation using cyclic testing was performed on two columns and two BCJ specimens scaled down to 50%. The experiment resulted in a poor response in both specimens. Excessive cracks and their propagation due to the incursion of the lateral loads could be observed close to the top and bottom of the specimens. Joint shear failure appeared in the joints. The ductility of the member was below the desired value of 4. This is the minimum number required to survive an earthquake with a similar magnitude to that of El Centro. The evidence provides an understanding of the seismic failure of poorly detailed RC frame structures.","PeriodicalId":49080,"journal":{"name":"Earthquakes and Structures","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47714356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Effect of various aspects on the seismic performanceof a curved bridge with HDR bearings 不同方面对HDR支座曲线桥抗震性能的影响
IF 1.5 4区 工程技术
Earthquakes and Structures Pub Date : 2020-12-01 DOI: 10.12989/EAS.2020.19.6.427
P. Gupta, G. Ghosh
{"title":"Effect of various aspects on the seismic performanceof a curved bridge with HDR bearings","authors":"P. Gupta, G. Ghosh","doi":"10.12989/EAS.2020.19.6.427","DOIUrl":"https://doi.org/10.12989/EAS.2020.19.6.427","url":null,"abstract":"The performance of an isolated horizontally curved continuous bridge with High Damping Rubber (HDR) Bearings has been investigated under seismic loading conditions. The effectiveness of response controls of the bridge by HDR bearings for various aspects viz. variation in ground motion characteristics, multi-directional effect, level of earthquake shaking, varying incidence angle, have been determined. Three recorded ground motions, representative of historical earthquakes along with near-field, far-field and forward directivity effects, have been considered in the study. The efficacy of the bearings with bi-directional effect considering interaction behavior of bearing and pier has also been investigated. Modeling and analysis of the bridge have been done by finite element approach. Sensitivity studies of the bridge response with respect to design parameters of the bearings for the considered ground motions have been performed. The importance of the nonlinearity of HDR bearings along with crucial design parameters has been identified. It has been observed that the HDR bearings performed well in different variations of ground motions, especially for controlling torsional moment. However, the deck displacement has been found to be increased significantly in case of Turkey ground motions, considering forward directivity effect, which needs to be paid more attention from designer point of view.","PeriodicalId":49080,"journal":{"name":"Earthquakes and Structures","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49369226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
A novel risk assessment approach for data center structures 一种新的数据中心结构风险评估方法
IF 1.5 4区 工程技术
Earthquakes and Structures Pub Date : 2020-12-01 DOI: 10.12989/EAS.2020.19.6.471
Kubilay Çiçek, A. Sarı
{"title":"A novel risk assessment approach for data center structures","authors":"Kubilay Çiçek, A. Sarı","doi":"10.12989/EAS.2020.19.6.471","DOIUrl":"https://doi.org/10.12989/EAS.2020.19.6.471","url":null,"abstract":"Previous earthquakes show that, structural safety evaluations should include the evaluation of nonstructural components. Failure of nonstructural components can affect the operational capacity of critical facilities, such as hospitals and fire stations, which can cause an increase in number of deaths. Additionally, failure of nonstructural components may result in economic, architectural, and historical losses of community. Accelerations and random vibrations must be under the predefined limitations in structures with high technological equipment, data centers in this case. Failure of server equipment and anchored server racks are investigated in this study. A probabilistic study is completed for a low-rise rigid sample structure. The structure is investigated in two versions, (i) conventional fixed-based structure and (ii) with a base isolation system. Seismic hazard assessment is completed for the selected site. Monte Carlo simulations are generated with selected parameters. Uncertainties in both structural parameters and mechanical properties of isolation system are included in simulations. Anchorage failure and vibration failures are investigated. Different methods to generate fragility curves are used. The site-specific annual hazard curve is used to generate risk curves for two different structures. A risk matrix is proposed for the design of data centers. Results show that base isolation systems reduce the failure probability significantly in higher floors. It was also understood that, base isolation systems are highly sensitive to earthquake characteristics rather than variability in structural and mechanical properties, in terms of accelerations. Another outcome is that code-provided anchorage failure limitations are more vulnerable than the random vibration failure limitations of server equipment.","PeriodicalId":49080,"journal":{"name":"Earthquakes and Structures","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48359118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Seismic and collapse analysis of a UHV transmission tower-line systemunder cross-fault ground motions 跨断层地震动作用下特高压输电塔-线系统的地震与坍塌分析
IF 1.5 4区 工程技术
Earthquakes and Structures Pub Date : 2020-12-01 DOI: 10.12989/EAS.2020.19.6.445
L. Tian, Wenzhe Bi, Juncai Liu, Dong Xu, Aiqiang Xin
{"title":"Seismic and collapse analysis of a UHV transmission tower-line systemunder cross-fault ground motions","authors":"L. Tian, Wenzhe Bi, Juncai Liu, Dong Xu, Aiqiang Xin","doi":"10.12989/EAS.2020.19.6.445","DOIUrl":"https://doi.org/10.12989/EAS.2020.19.6.445","url":null,"abstract":"An ultra-high voltage (UHV) transmission system has the advantages of low circuitry loss, high bulk capacity and long-distance transmission capabilities over conventional transmission systems, but it is easier for this system to cross fault rupture zones and become damaged during earthquakes. This paper experimentally and numerically investigates the seismic responses and collapse failure of a UHV transmission tower-line system crossing a fault. A 1:25 reduced-scale model is constructed and tested by using shaking tables to evaluate the influence of the forward-directivity and fling-step effects on the responses of suspension-type towers. Furthermore, the collapse failure tests of the system under specific cross-fault scenarios are carried out. The corresponding finite element (FE) model is established in ABAQUS software and verified based on the Tian-Ma-Qu material model. The results reveal that the seismic responses of the transmission system under the cross-fault scenario are larger than those under the near-fault scenario, and the permanent ground displacements in the fling-step ground motions tend to magnify the seismic responses of the fault-crossing transmission system. The critical collapse peak ground acceleration (PGA), failure mode and weak position determined by the model experiment and numerical simulation are in relatively good agreement. The sequential failure of the members in Segments 4 and 5 leads to the collapse of the entire model, whereas other segments basically remain in the intact state.","PeriodicalId":49080,"journal":{"name":"Earthquakes and Structures","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45159990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Equivalent linear and bounding analyses of bilinear hysteretic isolation systems 双线性滞回隔震系统的等效线性和边界分析
IF 1.5 4区 工程技术
Earthquakes and Structures Pub Date : 2020-11-01 DOI: 10.12989/EAS.2020.19.5.395
Shiang‐Jung Wang, Hsueh-Wen Lee, Chung-Han Yu, Cho‐Yen Yang, Wang‐Chuen Lin
{"title":"Equivalent linear and bounding analyses of bilinear hysteretic isolation systems","authors":"Shiang‐Jung Wang, Hsueh-Wen Lee, Chung-Han Yu, Cho‐Yen Yang, Wang‐Chuen Lin","doi":"10.12989/EAS.2020.19.5.395","DOIUrl":"https://doi.org/10.12989/EAS.2020.19.5.395","url":null,"abstract":"With verifications through many relevant researches in the past few decades, adopting the equivalent lateral force \u0000procedure for designing seismically isolated structures as a preliminary or even final design approach has become considerably \u0000mature and publicly acceptable, especially for seismic isolation systems that mechanically exhibit bilinear hysteretic behavior. \u0000During the design procedure, in addition to a given seismic demand, structural designers still need to previously determine three \u0000parameters, such as mechanical properties of seismic isolation systems or design parameters and performance indices of \u0000seismically isolated structures. However, an arbitrary or improper selection of given parameters might cause diverse or even \u0000unacceptable design results, thus troubling structural designers very much. In this study, first, based on the criterion that at least \u0000either two design parameters or two performance indices of seismically isolated structures are decided previously, the rationality \u0000and applicability of design results obtained from different conditions are examined. Moreover, to consider variations of design \u0000parameters of seismically isolated structures attributed to uncertainties of mechanical properties of seismic isolation systems, one \u0000of the conditions is adopted to perform bounding analysis for seismic isolation design. The analysis results indicate that with a \u0000reasonable equivalent damping ratio designed, considering a specific variation for two design parameters (the effective stiffness \u0000and equivalent damping ratio) could present more conservative bounding design results (in terms of isolation displacement and \u0000acceleration transmissibility) than considering the same variation but for two mechanical properties (the characteristic strength \u0000and post-yield stiffness).","PeriodicalId":49080,"journal":{"name":"Earthquakes and Structures","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41252112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intensity measure-based probabilistic seismic evaluationand vulnerability assessment of ageing bridges 基于烈度测量的老化桥梁概率地震评价与易损性评价
IF 1.5 4区 工程技术
Earthquakes and Structures Pub Date : 2020-11-01 DOI: 10.12989/EAS.2020.19.5.379
M. Yazdani, V. Jahangiri
{"title":"Intensity measure-based probabilistic seismic evaluationand vulnerability assessment of ageing bridges","authors":"M. Yazdani, V. Jahangiri","doi":"10.12989/EAS.2020.19.5.379","DOIUrl":"https://doi.org/10.12989/EAS.2020.19.5.379","url":null,"abstract":"The purpose of this study is to first evaluate the seismic behavior of ageing arch bridges by using the Intensity Measure - based demand and DCFD format, which is referred to as the fragility-hazard format. Then, an investigation is performed for their seismic vulnerability. Analytical models are created for bridges concerning different features and these models are subjected to Incremental Dynamic Analysis (IDA) analysis using a set of 22 earthquake records. The hazard curve and results of IDA analysis are employed to evaluate the return period of exceeding the limit states in the IM-based probabilistic performance-based context. Subsequently, the fragility-hazard format is used to assess factored demand, factored capacity, and the ratio of the factored demand to the factored capacity of the models with respect to different performance objectives. Finally, the vulnerability curves are obtained for the investigated bridges in terms of the loss ratio. The results revealed that decreasing the span length of the unreinforced arch bridges leads to the increase in the return period of exceeding various limit states and factored capacity and decrease in the displacement demand, the probability of failure, the factored demand, as well as the factored demand to factored capacity ratios, loss ratio, and seismic vulnerability. Finally, it is derived that the probability of the need for rehabilitation increases by an increase in the span length of the models.","PeriodicalId":49080,"journal":{"name":"Earthquakes and Structures","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44355201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Application of ultra-high performance fiber reinforced concrete for retrofitting the damaged exterior reinforced concrete beam-column joints 超高性能纤维混凝土在钢筋混凝土外梁柱节点损伤修补中的应用
IF 1.5 4区 工程技术
Earthquakes and Structures Pub Date : 2020-11-01 DOI: 10.12989/EAS.2020.19.5.361
Mohammed Al-Osta, Muhammad Irfan Khan, Ashraf A. Bahraq, Shi-Yu Xu
{"title":"Application of ultra-high performance fiber reinforced concrete for retrofitting the damaged exterior reinforced concrete beam-column joints","authors":"Mohammed Al-Osta, Muhammad Irfan Khan, Ashraf A. Bahraq, Shi-Yu Xu","doi":"10.12989/EAS.2020.19.5.361","DOIUrl":"https://doi.org/10.12989/EAS.2020.19.5.361","url":null,"abstract":"In the present research work, the effectiveness and the efficiency of a retrofitting approach using a layer of ultra-high performance fiber reinforced concrete (UHPFRC) jacket for damaged substandard exterior beam-column joints (BCJs) is experimentally investigated. The main objective of this study is to rehabilitate the already damaged BCJs to meet the serviceability requirements without compromising safety. According to the proposed strengthening technique, a chipped surface, lightly brushed with a dry condition was selected for making a successful bond between normal concrete substrate surface (NCSS) and UHPFRC. Then a fresh UHPFRC jacket with a thickness of 30 mm was cast around the damaged specimens. The entire test matrix was comprised of three 1/3 scale damaged exterior BCJs with a different column axial load (CAL). These specimens were repaired with UHPFRC and retested under monotonic loading. Based on the experimental results, repaired specimens showed an excellent performance in terms of their load-displacement response, maximum strength, displacement ductility, initial stiffness, secant stiffness and energy dissipation capacity when compared with the corresponding values registered when these specimens were tested in their virgin state. This rehabilitative intervention not only restored the strength, stiffness, ductility and energy dissipation capacity of severely damaged specimens but also improved their performance.","PeriodicalId":49080,"journal":{"name":"Earthquakes and Structures","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48378011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信