Earthquakes and Structures最新文献

筛选
英文 中文
Evaluation of pulse effect on frequency content of ground motions and definition of a new characteristic period 脉冲效应对地震动频率含量的评估和新特征周期的定义
IF 1.5 4区 工程技术
Earthquakes and Structures Pub Date : 2021-04-01 DOI: 10.12989/EAS.2021.20.4.457
S. Yaghmaei‐Sabegh
{"title":"Evaluation of pulse effect on frequency content of ground motions and definition of a new characteristic period","authors":"S. Yaghmaei‐Sabegh","doi":"10.12989/EAS.2021.20.4.457","DOIUrl":"https://doi.org/10.12989/EAS.2021.20.4.457","url":null,"abstract":"","PeriodicalId":49080,"journal":{"name":"Earthquakes and Structures","volume":"20 1","pages":"457"},"PeriodicalIF":1.5,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43773409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Response modification factor and seismic fragility assessment of skewed multi-span continuous concrete girder bridges 斜交多跨连续混凝土梁桥响应修正系数及地震易损性评价
IF 1.5 4区 工程技术
Earthquakes and Structures Pub Date : 2021-04-01 DOI: 10.12989/EAS.2021.20.4.389
A. Khorraminejad, Parshan Sedaghati, G. Foliente
{"title":"Response modification factor and seismic fragility assessment of skewed multi-span continuous concrete girder bridges","authors":"A. Khorraminejad, Parshan Sedaghati, G. Foliente","doi":"10.12989/EAS.2021.20.4.389","DOIUrl":"https://doi.org/10.12989/EAS.2021.20.4.389","url":null,"abstract":"Skewed bridges, being irregular structures with complicated dynamic behavior, are more susceptible to earthquake damage. Reliable seismic-resistant design of skewed bridges can be achieved by accurate determination of nonlinear seismic demands. However, the effect of geometric characteristics on the response modification factor (R-factor) is not accounted for in bridge design practices. This study attempts to investigate the effects of changes in the number of spans, skew angle and bearing stiffness on R-factor values and to assess the seismic fragility of skewed bridges. Results indicated that changes in the skew angle had no significant effect on R-factor values which were in consonance with code-prescribed R values. Also, unlike the increase in the number of spans that resulted in a decrease in the R-factor, the increase in bearing stiffness led to higher R-factor values. Findings of the fragility analysis implied that although the increase in the number of spans, as well as the increase in the skew angle, led to a higher failure probability, greater values of bearing stiffness reduced the collapse probability. For practicing design engineers, it is recommended that maximum demands on substructure elements to be calculated when the excitation angle is applied along the principal axes of skewed bridges.","PeriodicalId":49080,"journal":{"name":"Earthquakes and Structures","volume":"20 1","pages":"389"},"PeriodicalIF":1.5,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42408789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Seismic responses of hyperbolic cooling towers under horizontal and vertical earthquake 双曲型冷却塔在水平和垂直地震作用下的地震反应
IF 1.5 4区 工程技术
Earthquakes and Structures Pub Date : 2021-04-01 DOI: 10.12989/EAS.2021.20.4.405
Jun-Feng Zhang, Yuanhong Wang, Jie Li, Lin Zhao
{"title":"Seismic responses of hyperbolic cooling towers under horizontal and vertical earthquake","authors":"Jun-Feng Zhang, Yuanhong Wang, Jie Li, Lin Zhao","doi":"10.12989/EAS.2021.20.4.405","DOIUrl":"https://doi.org/10.12989/EAS.2021.20.4.405","url":null,"abstract":"Following the dynamic property analysis and elaboration, linear response spectrum analysis (RSA) and response history analysis (RHA) were conducted on a representative hyperbolic cooling towers (HCT) in present study. The seismic responses in tower shell were illustrated in detail, including the internal force amplitude, modal contribution, influence from damping ratio, comparison of results got from RSA and RHA and especially the latitude distributions of internal forces. The results show that the eigenmodes could be classified in a new method into four types according to their mode shapes and only the lateral bending modes and vertical stretching modes are meaningful for horizontal and vertical earthquake correspondingly. The bending modes and seismic deformation display the same feature which is global lateral bending accompanied by minute circular flow displacement of section. This feature also decides the latitude distributions of internal forces as sine or cosine. Moreover, the following method is also proposed for approximate estimation of internal force amplitudes without time-consuming response history analysis: getting the response spectrums of the selected ground accelerations and then comparing values of response spectrums at the natural period of first lateral bending mode because it is always prime dominant for horizontal seismic responses.","PeriodicalId":49080,"journal":{"name":"Earthquakes and Structures","volume":"20 1","pages":"405"},"PeriodicalIF":1.5,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45982413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seismic behavior of thin cold-formed steel plate shear walls with different perforation patterns 不同穿孔形式冷弯薄壁钢板剪力墙的抗震性能
IF 1.5 4区 工程技术
Earthquakes and Structures Pub Date : 2021-04-01 DOI: 10.12989/EAS.2021.20.4.377
H. Ahmadi, M. Sheidaii, S. Tariverdilo, A. Formisano, G. Matteis
{"title":"Seismic behavior of thin cold-formed steel plate shear walls with different perforation patterns","authors":"H. Ahmadi, M. Sheidaii, S. Tariverdilo, A. Formisano, G. Matteis","doi":"10.12989/EAS.2021.20.4.377","DOIUrl":"https://doi.org/10.12989/EAS.2021.20.4.377","url":null,"abstract":"Thin perforated Steel Plate Shear Walls (SPSWs) are among the most common types of seismic energy dissipation systems to protect the main boundary components of SPSWs from fatal fractures in the high-risk zones. In this paper, the cyclic behavior of the different circular hole patterns under cyclic loading is reported. Based on the experimental results, it can be concluded that a change in the perforation pattern of the circular holes leads to a change in the locations of the fracture tendency over the web plate, especially at the plate-frame interactions. Accordingly, the cyclic responses of the tested specimens were simulated by finite element method using the ABAQUS package. Likewise, perforated shear panels with a new perforation pattern obtained by implementing Topology Optimization (TO) were proposed. It was found that the ultimate shear strength of the specimen with the proposed TO perforation pattern was higher than that of the other specimens. In addition, theoretical equations using the Plate-Frame Interaction (PFI) method were used to predict the shear strength and initial stiffness of the considered specimens. The theoretical results showed that the proposed reduced coefficients relationships cannot accurately predict the shear strength and initial stiffness of the considered perforated shear panels. Therefore, the reduced coefficients should be adopted in the theoretical equations based on the obtained experimental and numerical results. Finally, with the results of this study, the shear strength and initial stiffness of these types of perforated shear panels can be predicted by PFI method.","PeriodicalId":49080,"journal":{"name":"Earthquakes and Structures","volume":"20 1","pages":"377"},"PeriodicalIF":1.5,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42792625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Damage assessment of buildings after 24 January 2020Elazig-Sivrice earthquake 2020年1月24日埃拉泽-西夫里策地震后建筑物的损坏评估
IF 1.5 4区 工程技术
Earthquakes and Structures Pub Date : 2021-03-01 DOI: 10.12989/EAS.2021.20.3.325
Ömer Faruk Nemutlu, Bilal Balun, A. Sarı
{"title":"Damage assessment of buildings after 24 January 2020Elazig-Sivrice earthquake","authors":"Ömer Faruk Nemutlu, Bilal Balun, A. Sarı","doi":"10.12989/EAS.2021.20.3.325","DOIUrl":"https://doi.org/10.12989/EAS.2021.20.3.325","url":null,"abstract":"The majority of Turkey's geography is at risk of earthquakes. Within the borders of Turkey, including the two major active faults contain the North-Eastern and Eastern Anatolia, earthquake, threatening the safety of life and property. On January 24, 2020, an earthquake of magnitude 6.8 occurred at 8:55 p.m. local time. According to the data obtained from the stations in the region, peak ground acceleration in the east-west direction was measured as 0.292 g from the 2308 coded station in Sivrice. It is thought that the earthquake with a magnitude of Mw 6.8 was developed on the Sivrice-Puturge segment of the Eastern Anatolian Fault, which is a left lateral strike slip fault, and the tear developed in an area of 50-55 km. Aftershocks ranging from 0.8 to 5.1 Mw occurred following the main shock on the Eastern Anatolian Fault. The earthquake caused severe structural damages in Elazig and neighboring provinces. As a result of the field investigations carried out in this study, significant damage levels were observed in the buildings since it did not meet the criteria in the earthquake codes. Within the study's scope, the structural damage cases in reinforced concrete and masonry structures were investigated. Many structural deficiencies and mistakes such as non-ductile details, poor concrete quality, short columns, strong beams–weak columns mechanism, large and heavy overhangs, masonry building damages and inadequate reinforcement arrangements were observed. Requirements of seismic codes are discussed and compared with observed earthquake damage.","PeriodicalId":49080,"journal":{"name":"Earthquakes and Structures","volume":"20 1","pages":"325"},"PeriodicalIF":1.5,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42907546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Assessment of seismic risk of a typical RC buildingfor the 2016 Gyeongju and potential earthquakes 2016年庆州典型钢筋混凝土建筑的地震风险评估和潜在地震
IF 1.5 4区 工程技术
Earthquakes and Structures Pub Date : 2021-03-01 DOI: 10.12989/EAS.2021.20.3.337
Hyunwoo Jee, S. Han
{"title":"Assessment of seismic risk of a typical RC buildingfor the 2016 Gyeongju and potential earthquakes","authors":"Hyunwoo Jee, S. Han","doi":"10.12989/EAS.2021.20.3.337","DOIUrl":"https://doi.org/10.12989/EAS.2021.20.3.337","url":null,"abstract":"On September 12, 2016, the Gyeongju earthquake occurred in the south-eastern region of the Korean peninsula. The event was ranked as the largest magnitude earthquake (=5.8) since instrumental recording was started by the Korean Metrological Administration (KMA) in 1978. The objective of this study is to provide information obtained from the 2016 Gyeongju earthquake and to propose a procedure estimating seismic risk of a typical old RC building for past and potential earthquakes. Ground motions are simulated using the point source model at 4941 grid locations in the Korean peninsula that resulted from the Gyeongju earthquake and from potential future earthquakes with the same hypocenter considering different soil conditions. Nonlinear response history analyses are conducted for each grid location using a three-story gravity-designed reinforced concrete (RC) frame that most closely represents conventional old school and public buildings. Then, contour maps are constructed to present the seismic risk associated with this building for the Gyeongju earthquake and potential future scenario earthquakes. These contour maps can be useful in the development of a mitigation plan for potential earthquake damage to school and public buildings at all grid locations on the Korean peninsula.","PeriodicalId":49080,"journal":{"name":"Earthquakes and Structures","volume":"20 1","pages":"337"},"PeriodicalIF":1.5,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41351593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of classical and reliable controller performancesfor seismic response mitigation 经典和可靠的地震响应控制性能的比较
IF 1.5 4区 工程技术
Earthquakes and Structures Pub Date : 2021-03-01 DOI: 10.12989/EAS.2021.20.3.353
B. Kavyashree, S. Patil, V. S. Rao
{"title":"Comparison of classical and reliable controller performancesfor seismic response mitigation","authors":"B. Kavyashree, S. Patil, V. S. Rao","doi":"10.12989/EAS.2021.20.3.353","DOIUrl":"https://doi.org/10.12989/EAS.2021.20.3.353","url":null,"abstract":"Natural hazards like earthquakes, high winds, and tsunami are a threat all the time for multi-story structures. The environmental forces cannot be clogged but the structures can be prevented from these natural hazards by using protective systems. The structural control can be achieved by using protective systems like the passive, active, semi-active, and hybrid protective systems; but the semi-active protective system has gained importance because of its adaptability to the active systems and reliability of the passive systems. Therefore, a semi-active protective system for the earthquake forces has been adopted in this work. Magneto-Rheological (MR) damper is used in the structure as a semi-active protective system; which is connected to the current driver and proposed controller. The Proportional Integral Derivative (PID) controller and reliable PID controller are two proposed controllers, which will actuate the MR damper and the desired force is generated to mitigate the vibration of the structural response subjected to the earthquake. PID controller and reliable PID controller are designed and tuned using Ziegler-Nichols tuning technique along with the MR damper simulated in Simulink toolbox and MATLAB to obtain the reduced vibration in a three-story benchmark structure. The earthquake is considered to be uncertain; where the proposed control algorithm works well during the presence of earthquake; this paper considers robustness to provide satisfactory resilience against this uncertainty. In this work, two different earthquakes are considered like El-Centro and Northridge earthquakes for simulation with different controllers. In this paper performances of the structure with and without two controllers are compared and results are discussed.","PeriodicalId":49080,"journal":{"name":"Earthquakes and Structures","volume":"20 1","pages":"353"},"PeriodicalIF":1.5,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43182022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seismic poundings of multi-story buildings isolated byTFPB against moat walls 多层建筑与护城河墙的地震冲击
IF 1.5 4区 工程技术
Earthquakes and Structures Pub Date : 2021-03-01 DOI: 10.12989/EAS.2021.20.3.295
Ayoub Shakouri, G. G. Amiri, Z. Miri, H. Lak
{"title":"Seismic poundings of multi-story buildings isolated byTFPB against moat walls","authors":"Ayoub Shakouri, G. G. Amiri, Z. Miri, H. Lak","doi":"10.12989/EAS.2021.20.3.295","DOIUrl":"https://doi.org/10.12989/EAS.2021.20.3.295","url":null,"abstract":"The gap provided between adjacent structures in the metropolitan cities is mostly narrow due to architectural and financial issues. Consequently, structural pounding occurs between adjacent structures during earthquakes. It causes damages, ranging from minor local to more severe ones, especially in the case of seismically isolated buildings, due to their higher displacements. However, due to the increased flexibility of isolated buildings, the problem could become more detrimental to such structures. The effect of the seismic pounding of moat walls on the response of buildings isolated by Triple Friction Pendulum Bearing (TFPB) is investigated in this paper. To this propose, two symmetric three-dimensional models, including single-story and five-story buildings, are modeled in Opensees. Nonlinear Time History Analyses (NTHA) are performed for seismic evaluation. Also, five different sizes with four different sets of friction coefficients are considered for base isolators to cover a whole range of base isolation systems with various geometry configurations and fundamental period. The results are investigated in terms of base shear, buildings' drift, and roof acceleration. Results indicated a profound effect of poundings against moat walls. In situations of potential pounding, in some cases, the influence of impact on seismic responses of multi-story buildings was more remarkable.","PeriodicalId":49080,"journal":{"name":"Earthquakes and Structures","volume":"20 1","pages":"295"},"PeriodicalIF":1.5,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42699095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Lateral-torsional seismic behaviour of plan unsymmetric buildings 平面非对称建筑的侧向扭转地震性能
IF 1.5 4区 工程技术
Earthquakes and Structures Pub Date : 2021-03-01 DOI: 10.12989/EAS.2021.20.3.239
G. Tamizharasi, A. M. Prasad, C. Murty
{"title":"Lateral-torsional seismic behaviour of plan unsymmetric buildings","authors":"G. Tamizharasi, A. M. Prasad, C. Murty","doi":"10.12989/EAS.2021.20.3.239","DOIUrl":"https://doi.org/10.12989/EAS.2021.20.3.239","url":null,"abstract":"Torsional response of buildings is attributed to poor structural configurations in plan, which arises due to two factors – torsional eccentricity and torsional flexibility. Usually, building codes address effects due to the former. This study examines both of these effects. Buildings with torsional eccentricity (e.g., those with large eccentricity) and with torsional flexibility (those with torsional mode as a fundamental mode) demand large deformations of vertical elements resisting lateral loads, especially those along the building perimeter in plan. Lateral-torsional responses are studied of unsymmetrical buildings through elastic and inelastic analyses using idealised single-storey building models (with two degrees of freedom). Displacement demands on vertical elements distributed in plan are non-uniform and sensitive to characteristics of both structure and earthquake ground motion. Limits are proposed to mitigate lateral-torsional effects, which guides in proportioning vertical elements and restricts amplification of lateral displacement in them and to avoid torsional mode as the first mode. Nonlinear static and dynamic analyses of multi-storey buildings are used to validate the limits proposed.","PeriodicalId":49080,"journal":{"name":"Earthquakes and Structures","volume":"20 1","pages":"239"},"PeriodicalIF":1.5,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42891496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of sequential earthquakes on evaluation of non-linear response of 3D RC MRFs 连续地震对三维RC MRF非线性响应评价的影响
IF 1.5 4区 工程技术
Earthquakes and Structures Pub Date : 2021-03-01 DOI: 10.12989/EAS.2021.20.3.279
P. Oggu, K. Gopikrishna
{"title":"Effect of sequential earthquakes on evaluation of non-linear response of 3D RC MRFs","authors":"P. Oggu, K. Gopikrishna","doi":"10.12989/EAS.2021.20.3.279","DOIUrl":"https://doi.org/10.12989/EAS.2021.20.3.279","url":null,"abstract":"Most of the existing seismic codes for RC buildings consider only a scenario earthquake for analysis, often characterized by the response spectrum at the specified location. However, any real earthquake event often involves occurrences of multiple earthquakes within a few hours or days, possessing similar or even higher energy than the first earthquake. This critically impairs the rehabilitation measures thereby resulting in the accumulation of structural damages for subsequent earthquakes after the first earthquake. Also, the existing seismic provisions account for the non-linear response of an RC building frame implicitly by specifying a constant response modification factor (R) in a linear elastic design. However, the 'R' specified does not address the changes in structural configurations of RC moment-resisting frames (RC MRFs) viz., building height, number of bays present, bay width, irregularities arising out of mass and stiffness changes, etc. resulting in changed dynamic characteristics of the structural system. Hence, there is an imperative need to assess the seismic performance under sequential earthquake ground motions, considering the adequacy of code-specified 'R' in the representation of dynamic characteristics of RC buildings. Therefore, the present research is focused on the evaluation of the non-linear response of medium-rise 3D RC MRFs with and without vertical irregularities under bi-directional sequential earthquake ground motions using non-linear dynamic analysis. It is evident from the results that collapse probability increases, and 'R' reduces significantly for various RC MRFs subjected to sequential earthquakes, pronouncing the vulnerability and inadequacy of estimation of design base shear by code-specified 'R' under sequential earthquakes.","PeriodicalId":49080,"journal":{"name":"Earthquakes and Structures","volume":"20 1","pages":"279"},"PeriodicalIF":1.5,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48555162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信