Inland Waters最新文献

筛选
英文 中文
Floods driving functional zooplankton diversity in a core area of the Brazilian Pantanal 洪水驱动巴西潘塔纳尔核心区浮游动物的功能多样性
IF 3.1 3区 环境科学与生态学
Inland Waters Pub Date : 2023-12-18 DOI: 10.1080/20442041.2023.2296334
Érica Oliveira de Lima, Louizi de Souza Magalhães Braghin, Cláudia Costa Bonecker, Carolina Joana Da Silva, Wilkinson Lopes Lázaro
{"title":"Floods driving functional zooplankton diversity in a core area of the Brazilian Pantanal","authors":"Érica Oliveira de Lima, Louizi de Souza Magalhães Braghin, Cláudia Costa Bonecker, Carolina Joana Da Silva, Wilkinson Lopes Lázaro","doi":"10.1080/20442041.2023.2296334","DOIUrl":"https://doi.org/10.1080/20442041.2023.2296334","url":null,"abstract":"The dynamics of water in floodplains are fundamental elements in structuring aquatic communities. Our research investigated zooplankton communities in the Pantanal ecosystem. We know that the diffe...","PeriodicalId":49061,"journal":{"name":"Inland Waters","volume":"29 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138715592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Causes and consequences of changing oxygen availability in lakes 湖泊中氧气可用性变化的原因和后果
3区 环境科学与生态学
Inland Waters Pub Date : 2023-10-18 DOI: 10.1080/20442041.2023.2239110
Cayelan C. Carey
{"title":"Causes and consequences of changing oxygen availability in lakes","authors":"Cayelan C. Carey","doi":"10.1080/20442041.2023.2239110","DOIUrl":"https://doi.org/10.1080/20442041.2023.2239110","url":null,"abstract":"Changing oxygen availability in lakes and reservoirs is a fundamental limnological challenge of our time, with massive consequences for freshwater ecosystem functioning and water quality. Cross-lake surveys, paleolimnological studies, and long-term monitoring records indicate that many lakes are exhibiting declines in both surface- and bottom-water oxygen availability due to climate and land use change, although a few lakes are exhibiting increases in oxygen. By analyzing time series of oxygen monitoring data from ∼400 lakes, I found that some lakes may be experiencing a decoupling of surface and bottom oxygen dynamics; variability in surface oxygen concentrations is decreasing in some lakes while variability in bottom oxygen concentrations is increasing. Changes in both oxygen concentrations and variability have many implications for lake functioning because oxygen concentrations control many ecosystem processes. Consequently, lake ecosystem provisioning and cultural services (e.g., drinking water, fisheries, recreation) will likely be impaired by declining oxygen, whereas the effects of changing oxygen on regulatory and supporting ecosystem services (e.g., nitrate removal through denitrification, carbon burial, sediment fluxes of phosphorus) may be more equivocal. These challenges motivate a research agenda focused on expanding the geographical range, temporal duration, and spatial extent of lake oxygen monitoring, as well as new approaches for studying and managing lakes (whole-ecosystem experiments, near-term oxygen forecasts). Looking ahead, advances in sensor technology, monitoring networks, data sharing, and forecasting, as well as the demonstrated success of environmental legislation in decreasing hypoxia, provide important opportunities for guiding restoration and science on lake oxygen.","PeriodicalId":49061,"journal":{"name":"Inland Waters","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135884260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Macrophyte growth forms shift along the trophic gradient of lakes 大型植物的生长形式沿着湖泊的营养梯度变化
3区 环境科学与生态学
Inland Waters Pub Date : 2023-10-16 DOI: 10.1080/20442041.2023.2271307
Willem Kaijser, Daniel Hering, Jochem Kail
{"title":"Macrophyte growth forms shift along the trophic gradient of lakes","authors":"Willem Kaijser, Daniel Hering, Jochem Kail","doi":"10.1080/20442041.2023.2271307","DOIUrl":"https://doi.org/10.1080/20442041.2023.2271307","url":null,"abstract":"Abstract:Phototrophic organisms in lakes change from macrophyte to phytoplankton dominated states along trophic gradients. Before lakes reach a turbid and phytoplankton dominated state, shifts from meadow-forming Characeae to canopy-forming macrophyte species can occur, where Characea are present (i.e. especially in oligo to mesotrophic lakes with sand or gravel substrate). However, eutrophication intensity causing this shift has not yet been estimated.We analysed data from 132 lakes located in Mecklenburg-Vorpommern (Germany). With a Generalized Linear Model (GLM) and Random Forest (RF) models complemented with grid approximation, we analysed (i) if species richness of macrophytes declines along eutrophication gradients, (ii) above which chlorophyll-a concentrations the abundance of Characeae declines, and (iii) above which chlorophyll-a concentrations the abundance canopy-forming species declines.The number of macrophyte taxa declined gradually following a log-linear trend and with increasing chlorophyll-a concentrations. Based on the RF models, the abundance of Characeae already decreased at 5-13 µg L-1 chlorophyll-a, whereas canopy-forming species showed a monotonous and slight unimodal response decreasing at 35-103 µg L-1 chlorophyll-a.The results support the theory of shifts in growth forms along eutrophication gradients in lakes and provides, for the first time, estimations of chlorophyll-a concentrations required for these shifts. Changes in growth forms are obvious indicators for eutrophication and can serve as an additional incentive to improve lake trophic status.Keywords: aquatic plantscanopy forming macrophytesCharaceaechlorophyll-aDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgementsWe would like to thank the Ministry of Agriculture and the Environment of the federal state of Mecklenburg-Vorpommern for kindly providing the macrophyte and water quality data of the lakes in Mecklenburg-Vorpommern. This study was partly conducted within the AQUATAG project, funded by the German Federal Ministry of Education and Research, grant number 033W046C. Willem Kaijser and Daniel Hering were partly supported by the Collaborative Research Centre 1439 RESIST (Multilevel Response to Stressor Increase and Decrease in Stream Ecosystems; www.sfb-resist.de) funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation; CRC 1439/1, project number: 426547801). The authors declare no conflict of interests.Data availability statementData are available from the respective authority upon reasonable request.","PeriodicalId":49061,"journal":{"name":"Inland Waters","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136079389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbon and nutrient sequestration in small impoundments: a regional study with global implications 小水库的碳和营养固存:具有全球意义的区域研究
3区 环境科学与生态学
Inland Waters Pub Date : 2023-10-11 DOI: 10.1080/20442041.2023.2265799
John R. Jones, Kimberly Pope-Cole, Daniel V. Obrecht, J.D. Harlan, Lesley B. Knoll, John A. Downing
{"title":"Carbon and nutrient sequestration in small impoundments: a regional study with global implications","authors":"John R. Jones, Kimberly Pope-Cole, Daniel V. Obrecht, J.D. Harlan, Lesley B. Knoll, John A. Downing","doi":"10.1080/20442041.2023.2265799","DOIUrl":"https://doi.org/10.1080/20442041.2023.2265799","url":null,"abstract":"AbstractThe rate of sequestration of carbon, nitrogen and phosphorus by lentic ecosystems informs both the global carbon budget and the remediation of eutrophication. Here we estimate carbon, nitrogen and phosphorus burial in sediments of 34 lakes in Missouri, USA, and compare them to those found in other agricultural areas as well as to global estimates. Mean sediment accumulation rates varied by orders of magnitude among study regions, with the largest values (average 6 cm y-1) in impounded systems surrounded by intensive agriculture. Rates increased with the drainage ratio and decreased with the abundance of other surface water in the catchment (e.g., farm ponds). Average organic carbon burial differed by an order of magnitude among study regions (average 150-2100 g m-2 y-1) with differences related to the drainage ratio and eutrophication. Organic carbon burial was strongly correlated with burial rates of nitrogen and phosphorus. Comparisons with a diversity of global data show that many Midwestern USA impoundments have extremely high rates of biogeochemical burial likely due to the details of agricultural cropping systems, landscape configuration, and soil characteristics.Keywords: carbonlakesnitrogenphosphorussedimentsequestrationDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgementsFunding for the Missouri data was provided by the Missouri Department of Natural Resources and Missouri Agricultural Experiment Station and Food & Agriculture Research Institute. Specific appreciation is extended to Anthony Thorpe and Carol Pollard.","PeriodicalId":49061,"journal":{"name":"Inland Waters","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136211012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impacts of chemical precipitation of phosphorus with polyaluminum chloride in two eutrophic lakes in southwest Finland 芬兰西南部两个富营养化湖泊中聚氯化铝化学沉淀磷的影响
3区 环境科学与生态学
Inland Waters Pub Date : 2023-10-03 DOI: 10.1080/20442041.2023.2266177
Jouko Sarvala, Harri Helminen
{"title":"Impacts of chemical precipitation of phosphorus with polyaluminum chloride in two eutrophic lakes in southwest Finland","authors":"Jouko Sarvala, Harri Helminen","doi":"10.1080/20442041.2023.2266177","DOIUrl":"https://doi.org/10.1080/20442041.2023.2266177","url":null,"abstract":"AbstractIn an attempt to improve water quality in two eutrophic shallow Finnish lakes, Kirkkojärvi and Littoistenjärvi, phosphorus precipitation with polyaluminum chloride was performed in June 2002 and May 2017, respectively. Here we compare the effects of the chemical treatment between the lakes to enhance our understanding of the mechanisms involved and to improve the predictability of similar management actions in the future. All plankton was killed in the treatment, but phytoplankton recovered in four weeks and crustacean zooplankton in two months. Because removal fishing had not been successful, the chemical dosage in Kirkkojärvi was intentionally set so high that the treatment killed all fish. In Littoistenjärvi pH was adjusted so that most fish survived. In Kirkkojärvi, the summer phosphorus (TP) and chlorophyll (Chl) concentrations in three years after the treatment dropped by 85 and 88% compared to those recorded three years before the treatment. Cyanobacterial biomass declined by 88%, only occasional blooms appearing in three out of twenty years. The average TP and Chl of the post-treatment period 2006–2020 indicated substantial improvement in the ecological state from “bad” to “moderate” rating of the EU Water Framework Directive (WFD). In Littoistenjärvi, the corresponding declines due to the Al treatment were 72% in TP and 87% in Chl concentration, and 92% in cyanobacterial biomass. Longevity of treatment effects was estimated using the upper boundaries of the WFD quality classes as the target values. Water quality changes followed the internal loading of TP, affected by temperature and pH.Keywords: total phosphoruschlorophyll aeutrophicationlake managementshallow lakesDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. Acknowledgements:Thanks are due to the numerous people involved in the monitoring and management of the study lakes. The actual chemical treatments became possible through the dedicated efforts of Jukka Heikkilä (Littoistenjärvi) and Eeva Ståhle (Kirkkojärvi). Funding was provided by the local municipalities, the Ministry of the Environment, and the Academy of Finland.Disclosure statement:The authors report there are no competing interests to declare.Data availability statement:Water chemistry, phytoplankton and fish data are available through Finnish Environment Institute’s open data service. Other data are available from the authors on request.","PeriodicalId":49061,"journal":{"name":"Inland Waters","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135738958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards modeling data-poor lakes at the regional scale using parameters from data-rich lakes and relationships to lake characteristics. 利用数据丰富的湖泊参数及其与湖泊特征的关系,在区域尺度上对数据贫乏的湖泊进行建模。
3区 环境科学与生态学
Inland Waters Pub Date : 2023-10-02 DOI: 10.1080/20442041.2023.2265798
Marianne Côté, Göran Englund, Tom Andersen, Dag O. Hessen, Anders G. Finstad, Claude Bélanger, Raoul-Marie Couture
{"title":"Towards modeling data-poor lakes at the regional scale using parameters from data-rich lakes and relationships to lake characteristics.","authors":"Marianne Côté, Göran Englund, Tom Andersen, Dag O. Hessen, Anders G. Finstad, Claude Bélanger, Raoul-Marie Couture","doi":"10.1080/20442041.2023.2265798","DOIUrl":"https://doi.org/10.1080/20442041.2023.2265798","url":null,"abstract":"AbstractLakes that are pivotal for recreation and economically relevant activities are often remote and not very well studied, which hinders the application of predictive lake models for their management. Here, we provide an approach to simulate, by means of the process-oriented model MyLake, water temperature, ice cover duration, dissolved oxygen, and light attenuation in 198 data-poor lakes based on parameters obtained for a subgroup of 12 data-rich lakes and morphometric data. Specifically, the model is first calibrated using a genetic algorithm on well-studied lakes. Then, simple relationships between the fitted parameters and lake-catchment morphometric properties are derived. The results of simulations using fitted and derived parameters are then compared. The loss in goodness-of-fit, expressed as root mean square error (RMSE), incurred by using estimated rather than calibrated parameters, is 0.17 oC for water temperature and 0.82 mg L-1 for dissolved oxygen. These general relationships are then used to provide the model parameters for 198 data-poor lakes distributed throughout Sweden and model these lakes. Overall, this proof of concept allows simulating lakes selected based on their relevance for lake management rather than based on the availability of extensive field datasets.Keywords: LakesLake modelingoxythermal habitatsclimate change impactmodel calibrationdata-poor lakesDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgmentsWe thank Koji Tominaga (Nanyang Technological University, Singapore) and Benjamin Laken (Cervest Inc., London, United-Kingdom) for the retrieval and preparation of the climate data. RMC acknowledges funding from the Sentinel North program of Université Laval, made possible, in part, thanks to funding from the Canada First Research Excellence program. Support from the Natural Sciences and Engineering Research Council of Canada, through the Discovery Grant program, from the Advancing climate science in Canada project “Changing carbon sinks in subarctic Canada” and from the Institut nordique du Québec (INQ) is also acknowledged. GE, DOH, TA and AGF acknowledge support from the Research Council of Norway projects #224779 and #221410.","PeriodicalId":49061,"journal":{"name":"Inland Waters","volume":"246 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135895981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deepwater dissolved oxygen shows little ecological memory between lake phenological seasons 深水溶解氧在湖泊物候季节间表现出较弱的生态记忆
3区 环境科学与生态学
Inland Waters Pub Date : 2023-10-02 DOI: 10.1080/20442041.2023.2265802
Rachel M. Pilla, Craig E. Williamson, Erin P. Overholt, Kevin C. Rose, Stella A. Berger, Raoul-Marie Couture, Heleen A. de Wit, Ignacio Granados, Hans-Peter F. Grossart, Georgiy B. Kirillin, Alo Laas, Jens C. Nejstgaard, James A. Rusak, Mark W. Swinton, Manuel Toro, Huaxia Yao
{"title":"Deepwater dissolved oxygen shows little ecological memory between lake phenological seasons","authors":"Rachel M. Pilla, Craig E. Williamson, Erin P. Overholt, Kevin C. Rose, Stella A. Berger, Raoul-Marie Couture, Heleen A. de Wit, Ignacio Granados, Hans-Peter F. Grossart, Georgiy B. Kirillin, Alo Laas, Jens C. Nejstgaard, James A. Rusak, Mark W. Swinton, Manuel Toro, Huaxia Yao","doi":"10.1080/20442041.2023.2265802","DOIUrl":"https://doi.org/10.1080/20442041.2023.2265802","url":null,"abstract":"Abstract:Depletion of deepwater dissolved oxygen (DO) in lakes has become increasingly prevalent and severe due to many external stressors, potentially threatening human-derived ecosystem services ranging from drinking water quality to fisheries. Using year-round, high-frequency DO data from 12 dimictic lakes, we compared three measures of deepwater DO depletion during winter and summer: DO depletion rate, DO minimum, and hypoxia duration. Hypoxia (DO < 3 mg L-1) occurred in over half of the lakes and persisted an average of 83% longer in summer than in winter. While we found no difference in DO depletion rates between winter versus summer, these rates were significantly related to lake morphology in winter but trophic state in summer. In assessing cross-seasonal linkages, we found limited evidence for significant legacy effects in deepwater DO availability. Only fall mixing efficacy significantly responded to the previous summer’s minimum DO saturation, but always reached moderate to high DO replenishment levels (> 65%) regardless of the previous summer’s DO depletion severity. This lack of ecological memory in deepwater DO depletion across seasons suggests that deepwater DO largely resets during spring and fall mixing periods in most years in these dimictic lakes. Understanding the patterns and drivers in deepwater DO depletion in both winter and summer is a key step forward for predicting future chemical and biological consequences of seasonal DO depletion and managing lake ecosystem health, as well as the effects that climate change may have on these patterns.Key Words: oxygen depletionlegacy effectslake mixingclimate changeoxygen minimum zoneswater qualityecological memoryDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. Acknowledgements:This work was conceived at the Global Lake Ecological Observatory Network (GLEON), and benefited from continued participation and travel support from GLEON. R.M.P., C.E.W., and E.P.O. were supported by US National Science Foundation grants DEB 1754265, DEB 1754276, and DEB 1950170 and Ohio Eminent Scholar of Ecosystem Ecology funds. K.C.R. was funded by NSF grants 1638704, 1754265, and 1761805. S.A.B., H.P.G., and J.C.N. were supported by the German Federal Ministry of Education and Research (BMBF) within the Collaborative Project “Bridging in Biodiversity Science - BIBS” (01LC1501G) and H.P.G.by the Leibniz Foundation. R.-M. C. was supported by the Sentinel North Research Chair in Aquatic Geochemistry (Sentinel North, a Canada First Research Excellence Fund Program). H.W. received support from the Norwegian Research Council","PeriodicalId":49061,"journal":{"name":"Inland Waters","volume":"113 1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135830936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High incidence of exotic ostracods in the rice fields of a protected Mediterranean wetland 地中海湿地保护稻田外来介形虫高发
3区 环境科学与生态学
Inland Waters Pub Date : 2023-09-25 DOI: 10.1080/20442041.2023.2262353
Maria Bisquert-Ribes, David J. Horne, Joan Miguel Benavente, Raül Martínez, Pablo Vera, Juan Rueda, Francesc Mesquita-Joanes
{"title":"High incidence of exotic ostracods in the rice fields of a protected Mediterranean wetland","authors":"Maria Bisquert-Ribes, David J. Horne, Joan Miguel Benavente, Raül Martínez, Pablo Vera, Juan Rueda, Francesc Mesquita-Joanes","doi":"10.1080/20442041.2023.2262353","DOIUrl":"https://doi.org/10.1080/20442041.2023.2262353","url":null,"abstract":"AbstractMediterranean rice fields are suited for biological invasions, as they are human-impacted temporary water bodies filled during summer, a hot period with scarce rains in the area. These anthropogenic ecosystems have been previously identified as potential gateways for exotic ostracods to colonize nearby wetlands. In this work, we aimed at comparing the rice fields ostracod composition and a shallow lake in a protected Mediterranean wetland (Albufera N2000 site, Eastern Iberian Peninsula). We found 37 ostracod species, 13 of which were considered exotic. Rice fields harbored the highest number of both native and exotic ostracod taxa (16 and 12 species, respectively). Our hypothesis that exotic species were more abundant during summer, whereas native species dominated the community in winter was confirmed by the analysis of temporal changes along the rice field cycle. Comparing the ostracod composition of rice fields with that of the littoral and central parts of the hypertrophic Lake Albufera showed a clear differentiation according to a spatially constrained cluster analysis, with the richest ostracod community corresponding to the rice fields, whereas the center of the lake, with scarce vegetation, had the lowest species richness. Finally, we suggest some criteria that could be followed to consider an ostracod species as native or exotic when its origin is unknown and discuss the potential origin of the exotic species found, the pathways they might have used to arrive and to establish in new areas, and the biological traits that may facilitate the spread of ostracods over new areas after their arrival.Keywords: alien crustaceansfreshwater invasionsOstracodapaddy fieldsshallow lakeDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgementsWe wish to thank the staff responsible of the sampling campaigns, B. Dies (Fundació Assut), G. Valieri (SIPCAM) and SEO/BirdLife (Valencia). We would also like to thank P. Mateache, former director of the Albufera N2000 site; M. Zizlavsky for his assistance in sample processing; and all SEO/BirdLife volunteers for their assistance during sampling campaigns. Giles Miller is greatly thanked for his support during the stay of MB-R at the NHM. The SCSIE microscopy personnel at the University of Valencia are acknowledged for their help with SEM imaging. We are very grateful to the anonymous reviewers for their helpful suggestions on a previous version of the manuscript.FundingThis publication is part of I + D + i project PID2020-112959GB-I00, funded by MCIN/AEI/10.13039/501100011033. This research was also supported by ","PeriodicalId":49061,"journal":{"name":"Inland Waters","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135816510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A national scale trophic state analysis to prioritize lakes for restoration in Aotearoa New Zealand 新西兰奥特罗阿地区湖泊优先恢复的全国尺度营养状态分析
3区 环境科学与生态学
Inland Waters Pub Date : 2023-09-11 DOI: 10.1080/20442041.2023.2257457
Susanna A Wood, Marcus J Vandergoes, Javier Atalah, Jamie D Howarth, Sean Waters, Georgia Thomson-Laing, Lucy Thompson, David Hamilton, Xavier Pochon, David Kelly, Chris Moy, Andrew Rees, Marc Schallenerg, Rose Gregerson, Adelaine Moody, Lizette Reyes, Claire Shepherd, Henry Gard, Lisa Floerl, John K Pearman
{"title":"A national scale trophic state analysis to prioritize lakes for restoration in Aotearoa New Zealand","authors":"Susanna A Wood, Marcus J Vandergoes, Javier Atalah, Jamie D Howarth, Sean Waters, Georgia Thomson-Laing, Lucy Thompson, David Hamilton, Xavier Pochon, David Kelly, Chris Moy, Andrew Rees, Marc Schallenerg, Rose Gregerson, Adelaine Moody, Lizette Reyes, Claire Shepherd, Henry Gard, Lisa Floerl, John K Pearman","doi":"10.1080/20442041.2023.2257457","DOIUrl":"https://doi.org/10.1080/20442041.2023.2257457","url":null,"abstract":"Pressures on lakes in Aotearoa New Zealand are increasing due to elevated catchment nutrient loads, establishment of non-native species, and climate change. Current government legislation requires that pressures are managed to avoid eutrophication and degradation of lake health. This approach requires information on the state of lakes at regional and national scales, which is challenging as less than 5% are currently monitored. In this study, we (1) modelled lake trophic status at a national scale using a highly representative dataset and lake characteristics, land-use, and environmental parameters as predictor variables, and (2) identified lakes that should be prioritized for protection to prevent further degradation. Six statistical models were evaluated, with extreme boosting producing the highest predictive power and lowest error. This model indicated that for the 3,738 lakes in the dataset, 44% were eutrophic or of higher trophic state, 22% mesotrophic, and 34% oligotrophic or of lower trophic state. This data provides a benchmark to guide management and supports the call for more resourcing to restore lakes in Aotearoa New Zealand. To identify lakes to prioritise for protection we focused on the approximately 800 mesotrophic lakes. We used (1) the portion of lake catchment not within conservation estate, and (2) road access as proxies for the likelihood of land-use intensification, and the introduction of non-native species, respectively. Over 170 lakes with limited catchment protection and easy human access were identified. Immediate attention should be given to protecting these waterbodies to prevent the need for costly and resource-intensive remediation in the future.","PeriodicalId":49061,"journal":{"name":"Inland Waters","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135981444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temporal and lake-specific variations in oxygen and hydrogen stable isotopes in a boreal lake-chain during two hydrologically differing years 在两个水文不同年份,北方湖泊链中氧和氢稳定同位素的时间和湖泊特异性变化
IF 3.1 3区 环境科学与生态学
Inland Waters Pub Date : 2023-09-07 DOI: 10.1080/20442041.2023.2255118
P. Kankaala, E. Sonninen, Eeva Einola, J. Huotari, Timo Huttula, Suvi Mäkelä, A. Ojala, M. Rask, T. Tulonen, L. Arvola
{"title":"Temporal and lake-specific variations in oxygen and hydrogen stable isotopes in a boreal lake-chain during two hydrologically differing years","authors":"P. Kankaala, E. Sonninen, Eeva Einola, J. Huotari, Timo Huttula, Suvi Mäkelä, A. Ojala, M. Rask, T. Tulonen, L. Arvola","doi":"10.1080/20442041.2023.2255118","DOIUrl":"https://doi.org/10.1080/20442041.2023.2255118","url":null,"abstract":"","PeriodicalId":49061,"journal":{"name":"Inland Waters","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49668394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信