Philosophia Mathematica最新文献

筛选
英文 中文
Predicative Classes and Strict Potentialism 谓词类和严格的潜在论
IF 1.1 1区 哲学
Philosophia Mathematica Pub Date : 2024-11-12 DOI: 10.1093/philmat/nkae020
Øystein Linnebo, Stewart Shapiro
{"title":"Predicative Classes and Strict Potentialism","authors":"Øystein Linnebo, Stewart Shapiro","doi":"10.1093/philmat/nkae020","DOIUrl":"https://doi.org/10.1093/philmat/nkae020","url":null,"abstract":"While sets are combinatorial collections, defined by their elements, classes are logical collections, defined by their membership conditions. We develop, in a potentialist setting, a predicative approach to (logical) classes of (combinatorial) sets. Some reasons emerge to adopt a stricter form of potentialism, which insists, not only that each object is generated at some stage of an incompletable process, but also that each truth is “made true” at some such stage. The natural logic of this strict form of potentialism is semi-intuitionistic: where each set-sized domain is classical, the domain of all sets or all classes is intuitionistic.","PeriodicalId":49004,"journal":{"name":"Philosophia Mathematica","volume":"40 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Is Iteration an Object of Intuition? 迭代是直觉的对象吗?
IF 1.1 1区 哲学
Philosophia Mathematica Pub Date : 2024-09-26 DOI: 10.1093/philmat/nkae019
Bruno Bentzen
{"title":"Is Iteration an Object of Intuition?","authors":"Bruno Bentzen","doi":"10.1093/philmat/nkae019","DOIUrl":"https://doi.org/10.1093/philmat/nkae019","url":null,"abstract":"In ‘Intuition, iteration, induction’, Mark van Atten argues that iteration is an object of intuition for Brouwer and explains the intuitive character of the act of iteration drawing from Husserl’s phenomenology. I find the arguments for this reading of Brouwer unconvincing. In this note I set out some issues with his claim that iteration is an object of intuition and his Husserlian explication of iteration. In particular, I argue that van Atten does not accomplish his goals due to tensions with Brouwer’s comments on second-order mathematics and because Husserl does not understand the experience of succession as Brouwer does.","PeriodicalId":49004,"journal":{"name":"Philosophia Mathematica","volume":"38 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142325606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Taxonomy for Set-Theoretic Potentialism 集合论潜在论的分类标准
IF 1.1 1区 哲学
Philosophia Mathematica Pub Date : 2024-08-28 DOI: 10.1093/philmat/nkae016
Davide Sutto
{"title":"A Taxonomy for Set-Theoretic Potentialism","authors":"Davide Sutto","doi":"10.1093/philmat/nkae016","DOIUrl":"https://doi.org/10.1093/philmat/nkae016","url":null,"abstract":"Set-theoretic potentialism is one of the most lively trends in the philosophy of mathematics. Modal accounts of sets have been developed in two different ways. The first, initiated by Charles Parsons, focuses on sets as objects. The second, dating back to Hilary Putnam and Geoffrey Hellman, investigates set-theoretic structures. The paper identifies two strands of open issues, technical and conceptual, to clarify these two different, yet often conflated, views and categorize the potentialist approaches that have emerged in the contemporary debate. The final outcome is a taxonomy that should help researchers navigate the rich landscape of modal set theories.","PeriodicalId":49004,"journal":{"name":"Philosophia Mathematica","volume":"4 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142084654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Up with Categories, Down with Sets; Out with Categories, In with Sets! 分类向上,集合向下;分类向外,集合向内!
IF 1.1 1区 哲学
Philosophia Mathematica Pub Date : 2024-04-13 DOI: 10.1093/philmat/nkae010
Jonathan Kirby
{"title":"Up with Categories, Down with Sets; Out with Categories, In with Sets!","authors":"Jonathan Kirby","doi":"10.1093/philmat/nkae010","DOIUrl":"https://doi.org/10.1093/philmat/nkae010","url":null,"abstract":"Practical approaches to the notions of subsets and extension sets are compared, coming from broadly set-theoretic and category-theoretic traditions of mathematics. I argue that the set-theoretic approach is the most practical for ‘looking down’ or ‘in’ at subsets and the category-theoretic approach is the most practical for ‘looking up’ or ‘out’ at extensions, and suggest some guiding principles for using these approaches without recourse to either category theory or axiomatic set theory.","PeriodicalId":49004,"journal":{"name":"Philosophia Mathematica","volume":"108 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140551916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identity and Extensionality in Boffa Set Theory 波法集合论中的同一性和扩展性
IF 1.1 1区 哲学
Philosophia Mathematica Pub Date : 2024-02-08 DOI: 10.1093/philmat/nkad025
Nuno Maia, Matteo Nizzardo
{"title":"Identity and Extensionality in Boffa Set Theory","authors":"Nuno Maia, Matteo Nizzardo","doi":"10.1093/philmat/nkad025","DOIUrl":"https://doi.org/10.1093/philmat/nkad025","url":null,"abstract":"Boffa non-well-founded set theory allows for several distinct sets equal to their respective singletons, the so-called ‘Quine atoms’. Rieger contends that this theory cannot be a faithful description of set-theoretic reality. He argues that, even after granting that there are non-well-founded sets, ‘the extensional nature of sets’ precludes numerically distinct Quine atoms. In this paper we uncover important similarities between Rieger’s argument and how non-rigid structures are conceived within mathematical structuralism. This opens the way for an objection against Rieger, whilst affording the theoretical resources for a defence of Boffa set theory as a faithful description of set-theoretic reality.","PeriodicalId":49004,"journal":{"name":"Philosophia Mathematica","volume":"29 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139750353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mathematical Explanations: An Analysis Via Formal Proofs and Conceptual Complexity 数学解释:通过形式证明和概念复杂性进行分析
IF 1.1 1区 哲学
Philosophia Mathematica Pub Date : 2023-12-07 DOI: 10.1093/philmat/nkad023
Francesca Poggiolesi
{"title":"Mathematical Explanations: An Analysis Via Formal Proofs and Conceptual Complexity","authors":"Francesca Poggiolesi","doi":"10.1093/philmat/nkad023","DOIUrl":"https://doi.org/10.1093/philmat/nkad023","url":null,"abstract":"This paper studies internal (or intra-)mathematical explanations, namely those proofs of mathematical theorems that seem to explain the theorem they prove. The goal of the paper is a rigorous analysis of these explanations. This will be done in two steps. First, we will show how to move from informal proofs of mathematical theorems to a formal presentation that involves proof trees, together with a decomposition of their elements; secondly we will show that those mathematical proofs that are regarded as having explanatory power all display an increase of conceptual complexity from the assumptions to the conclusion.","PeriodicalId":49004,"journal":{"name":"Philosophia Mathematica","volume":"43 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138559460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Luciano Boi and Carlos Lobo, eds. When Form Becomes Substance: Power of Gestures, Diagrammatical Intuition and Phenomenology of Space Luciano Boi 和 Carlos Lobo 编辑。当形式成为实质:手势的力量、图解直觉和空间现象学
IF 1.1 1区 哲学
Philosophia Mathematica Pub Date : 2023-12-06 DOI: 10.1093/philmat/nkad024
{"title":"Luciano Boi and Carlos Lobo, eds. When Form Becomes Substance: Power of Gestures, Diagrammatical Intuition and Phenomenology of Space","authors":"","doi":"10.1093/philmat/nkad024","DOIUrl":"https://doi.org/10.1093/philmat/nkad024","url":null,"abstract":"","PeriodicalId":49004,"journal":{"name":"Philosophia Mathematica","volume":"35 13","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138598119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Joel D. Hamkins.Lectures on the Philosophy of Mathematics Joel D. Hamkins.数学哲学讲座
IF 1.1 1区 哲学
Philosophia Mathematica Pub Date : 2023-12-06 DOI: 10.1093/philmat/nkad022
J. Ferreirós
{"title":"Joel D. Hamkins.Lectures on the Philosophy of Mathematics","authors":"J. Ferreirós","doi":"10.1093/philmat/nkad022","DOIUrl":"https://doi.org/10.1093/philmat/nkad022","url":null,"abstract":"","PeriodicalId":49004,"journal":{"name":"Philosophia Mathematica","volume":"29 2","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138595463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intuition, Iteration, Induction 直觉,迭代,归纳法
IF 1.1 1区 哲学
Philosophia Mathematica Pub Date : 2023-11-11 DOI: 10.1093/philmat/nkad017
Mark van Atten
{"title":"Intuition, Iteration, Induction","authors":"Mark van Atten","doi":"10.1093/philmat/nkad017","DOIUrl":"https://doi.org/10.1093/philmat/nkad017","url":null,"abstract":"Brouwer’s view on induction has relatively recently been characterised as one on which it is not only intuitive (as expected) but functional, by van Dalen. He claims that Brouwer’s ‘Ur-intuition’ also yields the recursor. Appealing to Husserl’s phenomenology, I offer an analysis of Brouwer’s view that supports this characterisation and claim, even if assigning the primary role to the iterator instead. Contrasts are drawn to accounts of induction by Poincaré, Heyting, and Kreisel. On the phenomenological side, the analysis provides an alternative to that in Tieszen’s Mathematical Intuition, and confirms a view of Gödel on his Dialectica Interpretation.","PeriodicalId":49004,"journal":{"name":"Philosophia Mathematica","volume":"74 4","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"110423257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dominique Pradelle.Être et genèse des idéalités. Un ciel sans éternité 多米尼克Pradelle。理想的存在和起源。没有永恒的天空
1区 哲学
Philosophia Mathematica Pub Date : 2023-11-08 DOI: 10.1093/philmat/nkad020
Bruno Leclercq
{"title":"Dominique Pradelle.<i>Être et genèse des idéalités. Un ciel sans éternité</i>","authors":"Bruno Leclercq","doi":"10.1093/philmat/nkad020","DOIUrl":"https://doi.org/10.1093/philmat/nkad020","url":null,"abstract":"Journal Article Dominique Pradelle.Être et genèse des idéalités. Un ciel sans éternité Get access Dominique Pradelle.*Être et genèse des idéalités. Un ciel sans éternité, [Being and genesis of ideal elements: A heaven without eternity.] Collection Épiméthée. Paris: PUF [Presses universitaires de France], 2023. Pp. 544. ISBN: 978-2-13-083587-5 (pbk); 978-2-13-083588-2 (epub); 978-2-13-085194-3 (pdf). Bruno Leclercq Bruno Leclercq Philosophy Department, Université de Liège, 4000 Liège, Belgium E-mail: b.leclercq@uliege.be https://orcid.org/0000-0002-3322-943X Search for other works by this author on: Oxford Academic Google Scholar Philosophia Mathematica, nkad020, https://doi.org/10.1093/philmat/nkad020 Published: 08 November 2023","PeriodicalId":49004,"journal":{"name":"Philosophia Mathematica","volume":"28 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135430051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信