{"title":"Evaluation of State of Fine Sands on the Basis of Shear Wave Velocity","authors":"Mirosław J. Lipiński, Małgorzata K. Wdowska","doi":"10.24425/ace.2020.131801","DOIUrl":"https://doi.org/10.24425/ace.2020.131801","url":null,"abstract":"The paper presents an approach to identify the state of fine sands on the basis of shear wave velocity measurement. Large body of experimental data was used to derive formulae which relate void ratio with shear wave velocity and mean effective stress for a given material. Two fine sands which contained 8 and 14% of fines were tested. The soils were tested in triaxial tests. Sands specimens were reconstituted in triaxial cell. In order to obtain predetermined void ratio values covering possible widest range of the parameter representing a very loose and dense state as well, the moist tamping method with use of undercompaction technique was adopted. Fully saturated soil underwent staged consolidation at the end of which shear wave velocity was measured. Since volume control of a specimen was enhanced by use of proximity transducers, representative 3 elements sets (i.e. void ratio e, mean effective stress p’ and shear wave velocity VS) describing state of material were obtained. Analysis of the test results revealed that relationship between shear wave velocity and mean effective stress p' can be approximated by power function in distinguished void ratio ranges. This made possible to derive formula for calculating void ratio for a given state of stress on the basis of shear wave velocity measurement. The conclusion concerning sensitivity of this approach to the fines content was presented.","PeriodicalId":45753,"journal":{"name":"Archives of Civil Engineering","volume":"16 9","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135584676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Use of Sand Columns in the Reinforcement of Weak Layers in Road Engineering","authors":"Sami Mohammed Ayyad, Omar Asad Ahmad","doi":"10.24425/ace.2021.136487","DOIUrl":"https://doi.org/10.24425/ace.2021.136487","url":null,"abstract":"It is an established fact that when roads are planned and constructed, consideration needs to be given to ensuring the strength of the road surface. It is, however, also the case that when an existing road is being rebuilt or is under maintenance, its base may need to be fortified to increase the road’s vehicle-carrying capacity. The base may, for example, contain a high proportion of weak soil that would be difficult, time-consuming, and costly to remove. This paper aims to investigate the efficacy of using sand-filled piles to reduce road deformation. Experiments conducted on sponge samples confirm that there is a relationship between the total area of sand-filled piles and relative reduction in deformation. It finds that the relationship is non-linear, but that the relationship can be made linear by adjusting the area of sand-filled piles. When the area of sand-filled piles increases from 7.8% to 19.4%, the deformation module can change by up to 100%. Relative reduction in deformation can change from 14% to 45.5% when the area of sand-filled piles increases from 7.8% to 11.7%. The maximum reduction in deformation – 92.4% occurs when the area of sand-filled piles exceeds 19.5%. Changing the loads borne also affects the deformation module. This paper found that when there was a 10 to 15kg load, and the number of sandfilled piles was increased, there was a change in the deformation module by 380-470%. When there was only a 5kg load on the sample, and the number of sand-filled piles was increased, there was a change in the deformation module by up to 1217%.","PeriodicalId":45753,"journal":{"name":"Archives of Civil Engineering","volume":"13 19","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135584714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental study of the basic mechanical properties of hardened gypsum paste modified with addition of polyoxymethylene micrograins","authors":"K. Prałat, M. Łukasiewicz, P. Miczko","doi":"10.24425/ACE.2020.131816","DOIUrl":"https://doi.org/10.24425/ACE.2020.131816","url":null,"abstract":"The development of the construction industry and the growing ecological awareness of society encourages us search for new solutions to improve building materials. Therefore, an attempt was made to improve building gypsum by modifying it with the addition of polyoxymethylene (POM). Polymer grains, with a particle size below and above 2 mm, were added to the samples in the amount of 1% and 2% relative to gypsum. The work contains the results of bending and compressive strength tests of prepared gypsum beams. It was shown that the compressive strength increased by 7% and the bending strength increased by 31% when compared to the reference test without the addition of polymer. All the obtained gypsum composites were characterized by a growth of strength. The best results were obtained for the sample containing gypsum composite modified with polymer in the amount of 1% and with a diameter of grains below 2 mm.","PeriodicalId":45753,"journal":{"name":"Archives of Civil Engineering","volume":"66 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68944078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Laboratory tests and numerical analysis of façade sub-structure made of austenitic steel","authors":"","doi":"10.24425/ace.2022.143036","DOIUrl":"https://doi.org/10.24425/ace.2022.143036","url":null,"abstract":": This article presents a study of a wall cladding system composed of stainless steel sub-frame and composite, fibre-reinforced concrete cladding panels, which was been installed on a high-rise public building. The study focused on the assessment of strength, safety and durability of design through laboratory tests and numerical analyses. The laboratory tests were conducted using a threedimensional tests stand and a full-scale mock-up of the wall cladding system built at the laboratory using the actually used materials and cladding panels. The boundary conditions and the test loads corresponded to the values of actions determined during the engineering phase of the high-rise building under analysis. Noteworthy, wind actions were verified by supplementary wind tunnel testing. In addition, the stainless steel was also tested to determine the strength properties of the material actually used in construction. These test were carried out just before commencement of the curtain wall installation. The 3D model was constructed with the application of the finite element method (FEM) to obtain adequate representation of geometry, material performance and structural behaviour of the analysed wall cladding system. Particular attention was paid to determination of the parameters defining the behaviour of the cladding system sub-frame from the angle of plastic deformations of the stainless steel and the resulting failure mechanisms of the members of the structure itself. To this end, the stainless steel was subjected to appropriate performance tests to determine material properties including the values of the proportionality limit and yield strength.","PeriodicalId":45753,"journal":{"name":"Archives of Civil Engineering","volume":"45 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135633922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PMBoK vs. PRINCE2 in the context of Polish construction projects: Structural Equation Modelling approach","authors":"Janusz Sobieraj, Dominik Metelski, Paweł Nowak","doi":"10.24425/ace.2021.137185","DOIUrl":"https://doi.org/10.24425/ace.2021.137185","url":null,"abstract":"This paper discusses the approaches of Polish construction managers in terms of their preferences for the use of the two most popular project management (PM) standards and methodologies, namely PMBoK and PRINCE2. Our empirical survey was carried out in a group of managers and construction experts and involved 192 Polish SME companies from the Polish construction sector. The answers to the questionnaire were carefully analysed and interpreted with the use of the Structural Equation Modeling (SEM) Method. The results show what can affect the choice of management methodology, with a particular focus on such latent variables as PM flexibility, rigidity, knowledge and control. Our study provides empirical evidence which contributes to more effective management of investment projects undertaken by construction companies. The most important conclusions from our study are that PMBoK is more likely tied to flexibility and knowledge and PRINCE2 to rigidity and control. However, it does not necessarily mean that PMBoK has an advantage over PRINCE2. Simply put, the choice of the right methodology may depend on a number of other additional factors, such as: project size, its specific environmental conditions, size of a company implementing specific project, etc. Therefore, under certain conditions (e.g. for larger and more complex projects, etc.) it may be advisable to rely on the PRINCE2 methodology.","PeriodicalId":45753,"journal":{"name":"Archives of Civil Engineering","volume":"16 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135544892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Time-to-Failure Forecast for Corroded Shell of Above-Ground Steel Tank Used to Store Liquid Fuels","authors":"Mariusz Maslak, Michał Pazdanowski","doi":"10.24425/ace.2021.136475","DOIUrl":"https://doi.org/10.24425/ace.2021.136475","url":null,"abstract":"An original simplified procedure to estimate the remaining service time of corroded shell of an on-the-ground steel tank used to store liquid fuels is presented in this paper. Current corrosion progress trend, identified a’posteriori based on the obligatory technical condition monitoring, is extrapolated to the future tank service time under the assumption that the conditions of service would not change and no renovation or modernization works would be undertaken. Failure probability understood as exhaustion of the capability to safely resist the loads applied due to the corrosion progress constitutes the measure of the sought uptime. For comparative purposes several effective inference methods have been proposed for the same input data, based on formally qualitatively different but corresponding description measures. It has been shown, that in the analysis of this type the representative values, usually expressed as quantiles of probability distributions describing random variables in use, need not be specified to verify the safety condition. The proposed algorithm is based on fully probabilistic considerations, and those, according to Authors’ opinion, by their nature lead to more reliable, and at the same time, objective estimates.","PeriodicalId":45753,"journal":{"name":"Archives of Civil Engineering","volume":"25 22","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135545843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Magdalena Kozień-Woźniak, Marta Fąfara, Łukasz Łukaszewski, Eliza Owczarek, Marcin Gierbienis
{"title":"Life cycle assessment of composite straw bale technology in residential buildings in the context of environmental, economical and energy perspectives – case study","authors":"Magdalena Kozień-Woźniak, Marta Fąfara, Łukasz Łukaszewski, Eliza Owczarek, Marcin Gierbienis","doi":"10.24425/ace.2021.137154","DOIUrl":"https://doi.org/10.24425/ace.2021.137154","url":null,"abstract":"Occurrences associated with the phenomena of climate change are increasingly visible. Effects of progressive environmental pollution are monitored with growing concern. Still, in the construction sector, the choice of sustainable materials and the knowledge concerning them is insignificant. Studies have shown that single-family residential buildings form the largest share of new buildings in Central European countries. It should be assumed that it is the improvement of this particular section of the construction sector to be the goal of further development of societies. This paper presents a case study of the construction of a house using straw a material that, on the one hand, is a product associated with local tradition, while significantly reducing carbon footprint of its production and use, on the other. The construction of a prototypical house with the application of composite technology, i.e. timber framing with straw bale infill, was compared with a conventional method (ceramic masonry units) which is currently the most popular choice for building single-family houses in Poland. The study is based on the building’s life cycle assessment (LCA) over its consecutive phases as a tested and reliable method of the verification of a material’s impact on the environment.","PeriodicalId":45753,"journal":{"name":"Archives of Civil Engineering","volume":"24 31","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135545862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of Protruding Rebar From Casting Element on Temperature Development and Compressive Strength of Mass Concrete","authors":"M. Kaszyńska, S. Skibicki","doi":"10.24425/ace.2020.131806","DOIUrl":"https://doi.org/10.24425/ace.2020.131806","url":null,"abstract":"The influence of rebar, protruding from concrete element during casting, on temperature and strength development was analyzed. Test models of size 50 cm x 50 cm x 50 cm were made with and without protruding rebar. The rebar protruding from the sample simulated the conditions of the hardening of elements such as bridge abutments or pylons, which require technological break. Samples were cast in insulated formworks, to create semi-adiabatic conditions for concrete curing, simulating real conditions of curing of mass structures. The research utilized selfconsolidating concrete with two different rapid hardening cements: CEM I 42.5R and CEM I 52.5R, and blastfurnace cement CEM III/A 42.5N. Continuous registration of temperatures in the samples was performed for the first 7 days. Based on the results acquired and compressive strength, the amount and kinetics of the heat given off in the concrete was determined and an evaluation of its strength in conditions simulating actual conditions was performed. The research showed that the difference in temperature between the reinforced and non-reinforced sample was approximately 14.0° C.","PeriodicalId":45753,"journal":{"name":"Archives of Civil Engineering","volume":"23 67","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135545877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effectiveness of Shear Strengthening of Walls Made Using AAC Blocks — Laboratory Test Results","authors":"M. Kałuża","doi":"10.24425/ace.2020.131794","DOIUrl":"https://doi.org/10.24425/ace.2020.131794","url":null,"abstract":"","PeriodicalId":45753,"journal":{"name":"Archives of Civil Engineering","volume":"23 54","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135545885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kexin X. Zhang, Tianyu Y. Qi, Xingwei W. Xue, Yanfeng F. Li, Zhimin M. Zhu
{"title":"Research on reinforcement technology of existing double-way curved arch bridge","authors":"Kexin X. Zhang, Tianyu Y. Qi, Xingwei W. Xue, Yanfeng F. Li, Zhimin M. Zhu","doi":"10.24425/ace.2021.137186","DOIUrl":"https://doi.org/10.24425/ace.2021.137186","url":null,"abstract":"Two-way curved arch bridges inherit the fine tradition of masonry structures, making full use of the advantages of prefabricated assembly, it adapts to the situation of no support construction and no large lifting machine and tools, and has the characteristics of convenient construction method and saving material consumption. In appearance, the two-way curved arch bridge has strong national cultural characteristics. The prefabricated components of the two-way curved arch bridge are fragmentary, complicated in bearing and poor in integrity. Most of the two-way curved arch bridges in service have been built for a long time and lack of maintenance and management. Increasing the cross-section reinforcement method is one of the two-way curved arch reinforcement methods. It has a significant effect, convenient construction, good rigidity and stability characteristics after the reinforcement. Through theoretical analysis, combined with a static load test results of the assessment of the bridge reinforcement effect. Through load test, it is found that the deflection of the arch rib after reinforcement is reduced by 9%~19% and the strain of the arch rib is reduced by 12%~22%. Through finite element calculation, the crack width of the reinforced arch rib decreases by 8.3%~14.2%. The results show that the stress and deflection are greatly improved by the method of increasing section","PeriodicalId":45753,"journal":{"name":"Archives of Civil Engineering","volume":"3 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135584381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}