Earth and Planetary Physics最新文献

筛选
英文 中文
Reponses of middle atmospheric circulation to the 2009 major sudden stratospheric warming 中层大气环流对2009年平流层主要突然变暖的响应
IF 2.9 3区 地球科学
Earth and Planetary Physics Pub Date : 2020-09-18 DOI: 10.26464/epp2020046
ShengYang Gu, Xin Hou, JiaHui Qi, KeMin TengChen, XianKang Dou
{"title":"Reponses of middle atmospheric circulation to the 2009 major sudden stratospheric warming","authors":"ShengYang Gu,&nbsp;Xin Hou,&nbsp;JiaHui Qi,&nbsp;KeMin TengChen,&nbsp;XianKang Dou","doi":"10.26464/epp2020046","DOIUrl":"10.26464/epp2020046","url":null,"abstract":"<p>In this research, the roles of gravity waves and planetary waves in the change to middle atmospheric residual circulation during a sudden stratospheric warming period are differentiated and depicted separately by adopting the downward control principle. Our analysis shows clear anomalous poleward residual circulation patterns from the equator to high latitudes in the lower winter stratosphere. At the same time, upward mean flows are identified at high latitudes of the winter upper stratosphere and mesosphere, which turn equatorward in the mesosphere and reach as far as the tropical region, and consequently the extratropical region in the summer hemisphere. The downward control principle shows that anomalous mesospheric residual circulation patterns, including interhemispheric coupling, are solely caused by the change in gravity wave forcing resulting from the reversal of the winter stratospheric zonal wind. Nevertheless, both planetary waves and gravity waves are important to variations in the winter stratospheric circulation, but with opposite effects.</p>","PeriodicalId":45246,"journal":{"name":"Earth and Planetary Physics","volume":"4 5","pages":"472-478"},"PeriodicalIF":2.9,"publicationDate":"2020-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49242991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Diurnal variability of the planetary boundary layer height estimated from radiosonde data 由无线电探空数据估计的行星边界层高度的日变率
IF 2.9 3区 地球科学
Earth and Planetary Physics Pub Date : 2020-09-18 DOI: 10.26464/epp2020042
Jie Gu, YeHui Zhang, Na Yang, Rui Wang
{"title":"Diurnal variability of the planetary boundary layer height estimated from radiosonde data","authors":"Jie Gu,&nbsp;YeHui Zhang,&nbsp;Na Yang,&nbsp;Rui Wang","doi":"10.26464/epp2020042","DOIUrl":"10.26464/epp2020042","url":null,"abstract":"<p>Diurnal variations in the planetary boundary layer height (PBLH) at different latitudes over different surface characteristics are described, based on 45 years (1973−2017) of radiosonde observations. The PBLH is determined from the radiosonde data by the bulk Richardson number (BRN) method and verified by the parcel method and the potential temperature gradient method. In general, the BRN method is able to represent the height of the convective boundary layer (BL) and neutral residual layer cases but has relatively large uncertainty in the stable BL cases. The diurnal cycle of the PBLH over land is quite different from the cycle over ocean, as are their seasonal variations. For stations over land, the PBLH shows an apparent diurnal cycle, with a distinct maximum around 15:00 LT, and seasonal variation, with higher values in summer. Compared with the PBLH over land, over oceans the PBLH diurnal cycles are quite mild, the PBLHs are much lower, and the seasonal changes are less pronounced. The seasonal variations in the median PBLH diurnal cycle are positively correlated with the near-surface temperature and negatively correlated with the near-surface relative humidity. Finally, although at most latitudes the daytime PBLH exhibits, over these 45 years, a statistically significant increasing trend at most hours between 12:00 LT and 18:00 LT over both land and ocean, there is no significant trend over either land or ocean in the nighttime PBLH for almost all the studied latitudes.</p>","PeriodicalId":45246,"journal":{"name":"Earth and Planetary Physics","volume":"4 5","pages":"479-492"},"PeriodicalIF":2.9,"publicationDate":"2020-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.26464/epp2020042","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44955999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Comparison of stratospheric evolution during the major sudden stratospheric warming events in 2018 and 2019 2018年和2019年主要平流层突然变暖事件的平流层演化比较
IF 2.9 3区 地球科学
Earth and Planetary Physics Pub Date : 2020-09-18 DOI: 10.26464/epp2020044
Zheng Ma, Yun Gong, ShaoDong Zhang, JiaHui Luo, QiHou Zhou, ChunMing Huang, KaiMing Huang
{"title":"Comparison of stratospheric evolution during the major sudden stratospheric warming events in 2018 and 2019","authors":"Zheng Ma,&nbsp;Yun Gong,&nbsp;ShaoDong Zhang,&nbsp;JiaHui Luo,&nbsp;QiHou Zhou,&nbsp;ChunMing Huang,&nbsp;KaiMing Huang","doi":"10.26464/epp2020044","DOIUrl":"10.26464/epp2020044","url":null,"abstract":"<p>Using Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) data in the northern hemisphere at the 10 hPa level, we compared the stratospheric evolution of temperature and geopotential height during two major sudden stratosphere warming events (SSWs) that occurred in the Arctic winter of 2018 and 2019. In the prewarming period, poleward temperature-enhanced regions were mainly located around 120°E with a displaced vortex and around 120°E and 60°W with splitting vortices. The evolution of geopotential height indicated that these temperature-enhanced regions were both on the western side of high-latitude anticyclones. In the postwarming period, the polar vortex turned from splitting to displacement in the 2018 SSW but from displacement to splitting in the 2019 SSW. Both transitions were observed over the Atlantic region, which may have been caused by anticyclones moving through the polar region. Our findings revealed that the evolution of the anticyclone is important during SSWs and is closely related to temperature-enhanced regions in the prewarming periods and to transitions of the polar vortices in postwarming periods.</p>","PeriodicalId":45246,"journal":{"name":"Earth and Planetary Physics","volume":"4 5","pages":"493-503"},"PeriodicalIF":2.9,"publicationDate":"2020-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46969687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Influence of annual atmospheric tide asymmetry on annual anomalies of the ionospheric mean state 年大气潮汐不对称对电离层平均状态年异常的影响
IF 2.9 3区 地球科学
Earth and Planetary Physics Pub Date : 2020-09-18 DOI: 10.26464/epp2020041
ZhiPeng Ren, WeiXing Wan, JianGang Xiong, Xing Li
{"title":"Influence of annual atmospheric tide asymmetry on annual anomalies of the ionospheric mean state","authors":"ZhiPeng Ren,&nbsp;WeiXing Wan,&nbsp;JianGang Xiong,&nbsp;Xing Li","doi":"10.26464/epp2020041","DOIUrl":"10.26464/epp2020041","url":null,"abstract":"<p>Through respectively adding June tide and December tide at the low boundary of the GCITEM-IGGCAS model (Global Coupled Ionosphere–Thermosphere–Electrodynamics Model, Institute of Geology and Geophysics, Chinese Academy of Sciences), we simulate the influence of atmospheric tide on the annual anomalies of the zonal mean state of the ionospheric electron density, and report that the tidal influence varies with latitude, altitude, and solar activity level. Compared with the density driven by the December tide, the June tide mainly increases lower ionospheric electron densities (below roughly the height of 200 km), and decreases electron densities in the higher ionosphere (above the height of 200 km). In the low-latitude ionosphere, tides affect the equatorial ionization anomaly structure (EIA) in the relative difference of electron density, which suggests that tides affect the equatorial vertical<b>\u0000 <i>E</i>\u0000 </b>×<b>\u0000 <i>B</i>\u0000 </b> plasma drifts. Although the tide-driven annual anomalies do not vary significantly with the solar flux level in the lower ionosphere, in the higher ionosphere the annual anomalies generally decrease with solar activity.\u0000</p>","PeriodicalId":45246,"journal":{"name":"Earth and Planetary Physics","volume":"4 5","pages":"429-435"},"PeriodicalIF":2.9,"publicationDate":"2020-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42855078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of the role of branching angle in the dynamic rupture process on a 3-D branching fault system 三维分支断裂系统动态破裂过程中分支角的作用分析
IF 2.9 3区 地球科学
Earth and Planetary Physics Pub Date : 2020-09-18 DOI: 10.26464/epp2020043
JingXing Fang, Feng Qian, HaiMing Zhang
{"title":"Analysis of the role of branching angle in the dynamic rupture process on a 3-D branching fault system","authors":"JingXing Fang,&nbsp;Feng Qian,&nbsp;HaiMing Zhang","doi":"10.26464/epp2020043","DOIUrl":"10.26464/epp2020043","url":null,"abstract":"<p>The fault branching phenomenon, which may heavily influence the patterns of rupture propagation in fault systems, is one of the geometric complexities of fault systems that is widely observed in nature. In this study, we investigate the effect of the branching angle on the rupture inclination and the interaction between branch planes in two-fork branching fault systems by numerical simulation and theoretical analysis based on Mohr’s circle. A friction law dependent on normal stress is used, and special attention is paid to studying how ruptures on the upper and lower branch planes affect the stress and rupture on each other separately. The results show that the two branch planes affect each other in different patterns and that the intensity of the effect changes with the branching angle. The rupture of the lower branch plane has a negative effect on the rupture of the upper branch plane in the case of a small branching angle but has almost no negative effect in the case of a large branching angle. The rupture of the upper branch plane, however, suppresses the rupture of the lower branch plane regardless of whether the branching angle is large or small.</p>","PeriodicalId":45246,"journal":{"name":"Earth and Planetary Physics","volume":"4 5","pages":"523-531"},"PeriodicalIF":2.9,"publicationDate":"2020-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44643399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inertial gravity waves observed by a Doppler wind LiDAR and their possible sources 多普勒风激光雷达观测到的惯性重力波及其可能的来源
IF 2.9 3区 地球科学
Earth and Planetary Physics Pub Date : 2020-09-18 DOI: 10.26464/epp2020039
XiangHui Xue, DongSong Sun, HaiYun Xia, XianKang Dou
{"title":"Inertial gravity waves observed by a Doppler wind LiDAR and their possible sources","authors":"XiangHui Xue,&nbsp;DongSong Sun,&nbsp;HaiYun Xia,&nbsp;XianKang Dou","doi":"10.26464/epp2020039","DOIUrl":"10.26464/epp2020039","url":null,"abstract":"<p>In this paper, we use wind observations by a Doppler wind LiDAR near Delingha (37.4°N, 97.4°E), Qinghai, Northwestern China to study the characteristics of inertial gravity waves in the stratosphere. We focus on 10–12 December 2013, a particularly interesting case study. Most of the time, the inertial gravity waves extracted from the LiDAR measurements were stationary with vertical wavelengths of about 9–11 km and horizontal wavelengths of about 800–1000 km. However, for parts of the observational period in this case study, a hodograph analysis indicates that different inertial gravity wave propagation features were present at lower and upper altitudes. In the middle and upper stratosphere (~30–50 km), the waves propagated downward, especially during a period of stronger winds, and to the northwest–southeast. In the lower stratosphere and upper troposphere (~10–20 km), however, waves with upward propagation and northeast–southwest orientation were dominant. By taking into account reanalysis data and satellite observations, we have confirmed the presence of different wave patterns in the lower and upper stratosphere during this part of the observational period. The combined data sets suggest that the different wave patterns at lower and upper height levels are likely to have been associated with the presence of lower and upper stratospheric jet streams.</p>","PeriodicalId":45246,"journal":{"name":"Earth and Planetary Physics","volume":"4 5","pages":"461-471"},"PeriodicalIF":2.9,"publicationDate":"2020-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44750166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Wavenumber-4 spectral component extracted from TIMED/SABER observations 从TIMED/SABER观测中提取的波数-4光谱成分
IF 2.9 3区 地球科学
Earth and Planetary Physics Pub Date : 2020-09-18 DOI: 10.26464/epp2020040
Xing Li, WeiXing Wan, JinBin Cao, ZhiPeng Ren
{"title":"Wavenumber-4 spectral component extracted from TIMED/SABER observations","authors":"Xing Li,&nbsp;WeiXing Wan,&nbsp;JinBin Cao,&nbsp;ZhiPeng Ren","doi":"10.26464/epp2020040","DOIUrl":"10.26464/epp2020040","url":null,"abstract":"<p>The wavenumber spectral components <i>WN</i>\u0000 <sub>4</sub> at the mesosphere and low thermosphere (MLT) altitudes (70–10 km) and in the latitude range between ±45° are obtained from temperature data (<i>T</i>) observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instruments on board the National Aeronautics and Space Administration (NASA)’s Thermosphere–Ionosphere–Mesosphere Energetics and Dynamics (TIMED) spacecraft during the 11-year solar period from 2002 to 2012. We analyze in detail these spectral components<i>WN<sub>k</sub>\u0000 </i> and obtain the main properties of their vertical profiles and global structures. We report that all of the wavenumber spectral components <i>WN<sub>k</sub>\u0000 </i> occur mainly around 100 km altitude, and that the most prominent component is the wavenumber spectral component <i>WN</i>\u0000 <sub>4</sub> structure. Comparing these long duration temperature data with results of previous investigations, we have found that the yearly variation of spectral component <i>WN</i>\u0000 <sub>4</sub> is similar to that of the eastward propagating non-migrating diurnal tide with zonal wavenumber 3 (DE3) at the low latitudes, and to that of the semi-diurnal tide with zonal wavenumber 2 (SE2) at the mid-latitudes: the amplitudes of the <i>A</i>\u0000 <sub>4</sub> are larger during boreal summer and autumn at the low-latitudes; at the mid-latitudes the amplitudes have a weak peak in March. In addition, the amplitudes of component <i>WN</i>\u0000 <sub>4</sub> undergo a remarkable short period variation: significant day-to-day variation of the spectral amplitudes <i>A</i>\u0000 <sub>4</sub> occurs primarily in July and September at the low-latitudes. In summary, we conclude that the non-migrating tides DE3 and SE2 are likely to be the origins, at the low-latitudes and the mid-latitudes in the MLT region, respectively, of the observed wavenumber spectral component <i>WN</i>\u0000 <sub>4</sub>.\u0000</p>","PeriodicalId":45246,"journal":{"name":"Earth and Planetary Physics","volume":"4 5","pages":"436-448"},"PeriodicalIF":2.9,"publicationDate":"2020-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49413988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The source of tropospheric tides 对流层潮汐的来源
IF 2.9 3区 地球科学
Earth and Planetary Physics Pub Date : 2020-09-18 DOI: 10.26464/epp2020049
Xing Li, WeiXing Wan, JinBin Cao, ZhiPeng Ren
{"title":"The source of tropospheric tides","authors":"Xing Li,&nbsp;WeiXing Wan,&nbsp;JinBin Cao,&nbsp;ZhiPeng Ren","doi":"10.26464/epp2020049","DOIUrl":"10.26464/epp2020049","url":null,"abstract":"<p>With the method of Hough mode decomposition (HMD), the tidal sources of the three main tidal components, namely, the migrating components DW1 (diurnal westward propagating wavenumber 1) and SW2 (semidiurnal westward propagating wavenumber 2) and the non-migrating component DE3 (diurnal eastward propagating wavenumber 3), at the tropospheric altitudes (1–12 km) and in the latitude range of ±60°, were obtained from National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) data during the interval from 1988 to 2011. We analyzed these sources in detail at 6 km and obtained the main properties of their yearly variations. The DW1 source was found to present a weak seasonal variation in the lower latitudes (about ±10°–15°). That is, the amplitudes of the DW1 sources were larger in the summer months than in the winter months, and DW1 presented semi-annual variation near the equator (±10°) such that the DW1 source was larger at the equinoxes than at the solstices. In addition, the SW2 source was symmetric and was stronger in the southern hemisphere than in the northern hemisphere. The SW2 source presented remarkable annual and semi-annual variation such that the amplitudes were largest during the March equinox months and larger during the June solstice months. In contrast, DE3 appeared mainly around the equatorial latitudes within about ±30°. The DE3 source presented remarkable semi-annual variation that was larger around the solstices than the equinoxes in the southern hemisphere, and it was opposite in the northern hemisphere. By HMD, we found that the tropospheric tides were primarily dominated by some leading propagating Hough modes, specifically, the (1, 1), (2, 3), and (3, 3) modes; the influences of the other Hough modes were negligible. The consequences of an El Niño–Southern Oscillation modulation of tidal amplitudes for the energy and momentum budgets of the troposphere may now be expected to attract attention. In summary, the above yearly variations of the main tidal sources and the Hough coefficients demonstrate that an HMD analysis can be used to investigate the tropospheric tides.</p>","PeriodicalId":45246,"journal":{"name":"Earth and Planetary Physics","volume":"4 5","pages":"449-460"},"PeriodicalIF":2.9,"publicationDate":"2020-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46578841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Mars Orbiter magnetometer of China’s First Mars Mission Tianwen-1 中国首次火星探测任务“天文一号”的火星轨道磁强计
IF 2.9 3区 地球科学
Earth and Planetary Physics Pub Date : 2020-08-18 DOI: 10.26464/epp2020058
Kai Liu, XinJun Hao, YiRen Li, TieLong Zhang, ZongHao Pan, ManMing Chen, XiaoWen Hu, Xin Li, ChengLong Shen, YuMing Wang
{"title":"Mars Orbiter magnetometer of China’s First Mars Mission Tianwen-1","authors":"Kai Liu,&nbsp;XinJun Hao,&nbsp;YiRen Li,&nbsp;TieLong Zhang,&nbsp;ZongHao Pan,&nbsp;ManMing Chen,&nbsp;XiaoWen Hu,&nbsp;Xin Li,&nbsp;ChengLong Shen,&nbsp;YuMing Wang","doi":"10.26464/epp2020058","DOIUrl":"10.26464/epp2020058","url":null,"abstract":"<p>As one of the seven scientific payloads on board the Tianwen-1 orbiter, the Mars Orbiter Magnetometer (MOMAG) will measure the magnetic fields of and surrounding Mars to study its space environment and the interaction with the solar wind. The instrument consists of two identical triaxial fluxgate magnetometer sensors, mounted on a 3.19 meter-long boom with a seperation of about 90 cm. The dual-magnetometers configuration will help eliminate the magnetic field interference generated by the spacecraft platform and payloads. The sensors are controlled by an electric box mounted inside the orbiter. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 10,000 nT per axis) with a resolution of 1.19 pT. Both magnetometers sample the ambient magnetic field at an intrinsic frequency of 128 Hz, but will operate in a model with alternating frequency between 1 and 32 Hz to meet telemetry allocations.</p>","PeriodicalId":45246,"journal":{"name":"Earth and Planetary Physics","volume":"4 4","pages":"384-389"},"PeriodicalIF":2.9,"publicationDate":"2020-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.26464/epp2020058","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42417329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 22
A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover 火星局部地壳场模型:以2020年中国火星车候选着陆点为目标
IF 2.9 3区 地球科学
Earth and Planetary Physics Pub Date : 2020-08-18 DOI: 10.26464/epp2020045
XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan
{"title":"A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover","authors":"XinZhou Li,&nbsp;ZhaoJin Rong,&nbsp;JiaWei Gao,&nbsp;Yong Wei,&nbsp;Zhen Shi,&nbsp;Tao Yu,&nbsp;WeiXing Wan","doi":"10.26464/epp2020045","DOIUrl":"10.26464/epp2020045","url":null,"abstract":"<p>Unlike Earth, Mars lacks a global dipolar magnetic field but is dominated by patches of a remnant crustal magnetic field. In 2021, the Chinese Mars Rover will land on the surface of Mars and measure the surface magnetic field along a moving path within the possible landing region of 20°W–50°W, 20°N–30°N. One scientific target of the Rover is to monitor the variation in surface remnant magnetic fields and reveal the source of the ionospheric current. An accurate local crustal field model is thus considered necessary as a field reference. Here we establish a local crust field model for the candidate landing site based on the joint magnetic field data set from Mars Global Explorer (MGS) and Mars Atmosphere and Volatile Evolution (MAVEN) data combined. The model is composed of 1,296 dipoles, which are set on three layers but at different buried depths. The application of the dipole model to the joint data set allowed us to calculate the optimal parameters of their dipoles. The calculated results demonstrate that our model has less fitting error than two other state-of-the art global crustal field models, which would indicate a more reasonable assessment of the surface crustal field from our model.</p>","PeriodicalId":45246,"journal":{"name":"Earth and Planetary Physics","volume":"4 4","pages":"420-428"},"PeriodicalIF":2.9,"publicationDate":"2020-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"99489998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信