{"title":"A Review on Neural Dynamics for Robot Autonomy","authors":"Dechao Chen, Shuai Li, Qing Wu","doi":"10.5430/IJRC.V1N1P20","DOIUrl":"https://doi.org/10.5430/IJRC.V1N1P20","url":null,"abstract":"Exploiting neural networks to solve control problems of robots is becoming commonly and effectively in academia and engineering. Due to the remarkable features like distributed storage, parallelism, easy implementation by hardware, adaptive self-learning capability, and free of off-line training, the solutions of neural networks break the bottlenecks of serial-processing strategies and methods, and serve as significant alternatives for robotic engineers and researchers. Especially, various types and branches of recurrent neural networks (RNNs) have been sequentially developed since the seminal works by Hopfield and Tank. Successively, many classes and branches of RNNs such as primal-dual neural networks (PDNNs), zeroing neural networks (ZNNs) and gradient neural networks (GNNs) are proposed, investigated, developed and applied to the robot autonomy. The objective of this paper is to present a comprehensive review of the research on neural networks (especially RNNs) for control problems solving of different kinds of robots. Specifically, the state-of-the-art research of RNNs, PDNNs, ZNNs and GNNs in different robot control problems solving are detailedly revisited and reported. The readers can readily find many effective and valuable solutions on the basis of neural networks for the robot autonomy in this paper.","PeriodicalId":448095,"journal":{"name":"International Journal of Robotics and Control","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134412575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mind-Wave Controlled Robot: An Arduino Robot Simulating the Wheelchair for Paralyzed Patients","authors":"Chi Hang Cheng, Shuai Li, Seifedine Kadry","doi":"10.5430/IJRC.V1N1P6","DOIUrl":"https://doi.org/10.5430/IJRC.V1N1P6","url":null,"abstract":"This project attempts to implement an Arduino robot to simulate a brainwave-controlled wheelchair for paralyzed patients with an improved controlling method. The robot should be able to move freely in anywhere under the control of the user and it is not required to predefine any map or path. An accurate and natural controlling method is provided, and the user can stop the robot any time immediately to avoid risks or danger. This project is using a low-cost and a brainwave-reading headset which has only a single lead electrode (Neurosky mind wave headset) to collect the EEG signal. BCI will be developed by sending the EEG signal to the Arduino Mega and control the movement of the robot. This project used the eye blinking as the robot controlling method as the eye blinking will cause a significant pulse in the EEG signal. By using the neural network to classify the blinking signal and the noise, the user can send the command to control the robot by blinking twice in a short period of time. The robot will be evaluated by driving in different places to test whether it can follow the expected path, avoid the obstacles, and stop in a specific position.","PeriodicalId":448095,"journal":{"name":"International Journal of Robotics and Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125521387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}